Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.12.917

Dissolution and Precipitation behaviors of Complex Carbonitrides in Austenite of a V-Nb Microalloyed Steel  

Ha, Yangsoo (Department of Materials Science and Engineering, Yonsei University)
Jung, Jae-Gil (Department of Materials Science and Engineering, Yonsei University)
Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.12, 2011 , pp. 917-923 More about this Journal
Abstract
Dissolution and precipitation behaviors of complex carbonitrides in austenite of a V-Nb microalloyed steel were quantitatively examined through electrical resistivity measurement and transmission electron microscopy. The electrical resistivity increased with solution treatment temperature up to $1240^{\circ}C$ and then was saturated at $225n{\Omega}m$ for a holding time of 10 min. The electrical resistivity method was also used to quantitatively measure the isothermal precipitation kinetics of the complex carbonitrides in austenite. Nb-rich precipitates were observed in austenite at the early stages of precipitation, but Nb was replaced by V up to the equilibrium amount within the precipitates with further holding time. The time-temperature-precipitation diagram showed a C-type curve; nose temperature and its incubation time were $900^{\circ}C$ and 100 s, respectively.
Keywords
metals; thermomechanical processing; carbonitride; precipitation; electrical conductirity resistivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S.S. Campos, E.V. Morales, and H.J. Kestenbach, Metall. Mater. Trans. 32A, 1245 (2001).
2 R.D.K. Misra, K.K. Tenneti, G.C. Weatherly, and G. Tither, Metall. Mater. Trans. 34A, 2341 (2003).
3 B. Dutta and C.M. Sellars, Mater. Sci. Technol. 2, 146 (1985).
4 M. Gomez, L. Rancel, and S. Medina, Met. Mater. Int. 15, 689 (2009).   DOI   ScienceOn
5 S.Y. Han, S.Y. Shin, S. Lee, J.H. Bae, and K. Kim, J. Kor. Inst. Met. & Mater. 47, 523 (2009).
6 J.G. Jung, J.S. Park, Y.S. Ha, Y.K. Lee, J.H. Bae, and K. Kim, J. Korean Soc. Heat Treat. 21, 287 (2008).
7 J.S. Park, and Y.K. Lee, Scr. Mater. 56, 225 (2007).   DOI   ScienceOn
8 J.C. Herman, B. Donnay, and V. Leroy, ISIJ Int., 32, 779 (1992).   DOI
9 S.S. Hansen, J.B.V. Sande, and M. Cohen, Metall. Trans. 11A, 387 (1980).
10 S.G. Hong, K.B. Kang, and C.G. Park, Scr. Mater. 46, 163 (2002).   DOI   ScienceOn
11 O. Kwon and A.J. DeArdo, Acta Mater. 39, 529 (1991).   DOI   ScienceOn
12 J.S. Park, Y.S. Ha, S.J. Lee, and Y.K. Lee, Metall. Mater. Trans. 40A, 560 (2009).
13 A. Pandit, A. Murugaiyan, A.S. Podder, A. Haldar, D. Bhattacharjee, S. Chandra, and R.K. Ray, Scr. Mater. 53, 1309 (2005).   DOI   ScienceOn
14 J.G. Jung, J.S. Park, J. Kim, and Y.K. Lee, Mater. Sci. Eng. A 528A, 5529 (2011).
15 S. Shanmugam, M. Tanniru, R.D.K. Misra, D. Panda, and S. Jansto, Mater. Sci. Technol. 21, 165 (2005).   DOI   ScienceOn
16 S. Shanmugam, M. Tanniru, R.D.K. Misra, D. Panda, and S. Jansto, Mater. Sci. Technol. 21, 883 (2005).   DOI   ScienceOn
17 T. Gladman, The physical metallurgy of microalloyed steels, p.81-135, The institute of materials, Cambridge (1997).
18 N. Saunders and A.P. Miodownik, CALPHAD, p. 61-87, Pergamon, London (1998).
19 ASTM, F-76-86, p. 1-13, ASTM, Philadelphia (2002).
20 S. Akhlaghi and D.G. Ivey, Can. Metall. Quart. 41, 111 (2002).   DOI   ScienceOn
21 G. Neumann and C. Tuijn, Self-diffusion and impurity diffusion in pure metals, 1st ed., p. 261-273, Elsevier (2009).