Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.04.320

Characterization of NiO Films with the Process Variables in the RF-Sputtering  

Chung, Kook Chae (Korea Institute of Materials Science)
Kim, Young Kuk (Korea Institute of Materials Science)
Choi, Chul Jin (Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.48, no.4, 2010 , pp. 320-325 More about this Journal
Abstract
NiO thin films were deposited by radio frequency magnetron sputtering on glass substrates. The processing variables of the oxygen content, sputtering power, and pressure were varied to investigate the electrical properties and surface morphology of NiO films. It was found that the resistivity of NiO films at $1.22{\times}10^2{\Omega}cm$ (2.5% $O_2$ in Ar gas) was greatly reduced to$ 2.01{\times}10^{-1}$ ${\Omega}cm$ (100% oxygen) under a typical sputtering condition of 6 mTorr and 200 watts. In an effort to observe the resistivity variances, the sputtering power was varied from 80 to 200 watts at 6 mTorr with 100% $O_2$. However, the resistivity of the NiO films changed in the range of $10^{-1}-10^{-2}$ ${\Omega}cm$. The dependence on the sputtering power was therefore found to be weak in this experiment. When the sputtering pressure was changed from 3 to 60 mTorr at 200 watts with 100% $O_2$, the resistivity of the NiO films showed the lowest value of $5.8{\times}10^{-3}$ ${\Omega}cm$ at 3 mTorr, which is close to that of commercial ITO films (${\sim}10^{-4}$ ${\Omega}cm$). As the sputtering pressure increased, the resistivity also increased to 4.67 cm at 60 mTorr. The surface morphology of the NiO films was also checked by Atomic Force Microscopy. It was found that the RMS surface roughness values ranged from 0.6 to 1.5 nm and thtthe dependence on the sputtering parameters was weak.
Keywords
optoelectronic materials; sputtering; electrical properties; resistivity; AFM;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 H. Sato, T. Minami, S. Takata, and T. Yamada, Thin Solid Films 236, 27 (1993)   DOI   ScienceOn
2 S. Coe, W. K. Woo, M. Bawedi, and V. Bulovic, Nature 420, 800 (2002)   DOI   ScienceOn
3 L. A. Kim, P. Anikeeva, S. Coe-Sulivan, J. Steckel, M. Bawendi, and V. Bulovic, Nano Lett. 8, 4513 (2008)   DOI   ScienceOn
4 F. Papadimitrakopoulos and X. M. Zhang, Synth. Mat. 85, 1221 (1997)   DOI   ScienceOn
5 T. Seike and J. Nagai, Sol. Energy Mater. 22, 107 (1991)   DOI   ScienceOn
6 L. Wang, Z. Zhang, and Y. Cao, J. Ceram. Soc. Jpn. 101, 227 (1993)   DOI   ScienceOn
7 L. Cattin, B. Reguig, A. Khelil, M. Morsli, K. Benchouk, and J. Bernede, Appl. Surf Sci. 254, 5814 (2008)   DOI   ScienceOn
8 J. Caruge, J. Halpert, V. Bulovic, and M. Bawendi, Nano Lett. 6, 2991 (2006)   DOI   ScienceOn
9 J. Caruge, J. Halpert, V. Wood, V. Bulovic, and M. Bawendi, Nature Photonics 2, 247 (2008)   DOI   ScienceOn
10 J. Scarminio, W. Estrada, A. Andersson, A. Gorenstein, and F. Decker, J. Electrochem. Soc. 139, 1236 (1992)   DOI
11 C. Otterman, A. Temmink, and K. Bange, Thin Solid Films 193/194, 409 (1990)
12 W. Estrada, A. Andersson, and C. Granqvist, J. Appl. Phys. 64 3678 (1998)
13 J. N. Shin, Y. J. Cho, and D. K. Choi, J. Kor. Inst. Met. & Mater. 47,38 (2009)
14 W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, Adv. Mater. 21, 1690 (2009)   DOI   ScienceOn
15 Y Sato and H. Kanai, Mol. Cryst. Liq. Cryst. 252, 435 (1994)
16 P. Fenter et al., Chem. Phys. Lett. 277,521 (1997)   DOI   ScienceOn
17 Uri Banin, Nature Photonics 2, 209 (2008)   DOI   ScienceOn
18 O. Kohmoto, H. nakagawa, F. Ono, and A. Chayahara, J. Magn. Magn. Mater. 226-230,1627 (2001)   DOI   ScienceOn
19 S. Nandy, B. Saha, M. Mitra, and K. Chattopadhyay, J. Mater. Sci. 42, 5766 (2007)   DOI   ScienceOn
20 D. Wruck, A. Dixon, M. Rubin, and S. Bogy, J. Vac. Sci. Technol. 19, 2170 (1991)