Browse > Article

Fabrication of 316L Stainless Steel having Low Contact Resistance for PEMFC Separator using Powder Metallurgy  

Choi, Joon Hwan (Korea Institute of Materials Science)
Kim, Myong-Hwan (Korea Automotive Technology Institute)
Kim, Yong-Jin (Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.46, no.12, 2008 , pp. 817-822 More about this Journal
Abstract
Metal matrix composite (MMC) materials having low electrical contact resistance based on 316L stainless steel (STS) matrix alloy with $ZrB_2$ particles were fabricated for PEMFC (Polymer Electrolyte Membrane Fuel Cell) separator by powder metallurgy (PM). The effects of the boride particle addition into the matrix alloy on microstructure, surface morphology, and interfacial contact resistance (ICR) between the samples and gas diffusion layer (GDL) were investigated. Both conventional and PM 316L STS samples showed high ICR due to the existence of non-conductive passive film on the alloy surface. The addition of the boride particles, however, remarkably reduced ICR of the samples. SEM observation revealed that the boride particles were protruded out of the matrix surface and particle density existing on the surface increased with increasing the boride content, causing increase of the total contact area between the conductive particles and GDL. ICR of the samples also decreased with increasing the boride content resulted from the increased contact area.
Keywords
fuel cell; separator; 316L stainless steel; interfacial contact resistance; powder metallurgy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. Basu ed. Recent Trends in Fuel Cell Science and Technology, p. 1-3, Springer, New Delhi (2007)
2 X. Li and I. Sabir, Int. J. Hydrogen Energy 30, 359 (2004)
3 P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, J. Power Sources 80, 235 (1999)   DOI   ScienceOn
4 H. Wang, M. A. Sweikart, and J. A. Turner, J. Power Sources 115, 243 (2003)   DOI   ScienceOn
5 S. Balaji and A. Upadhyaya, Mater. Chem. Phys. 101, 310 (2007)   DOI   ScienceOn
6 M. L. Bauccio ed., ASM engineered materials reference book, 2nd ed., p.280, 303, 308-309, ASM International, Materials Park, OH, USA (1994)
7 H. Wang, M. P. Brady, G. Teeter, and J. A. Turner, J. Power Sources 138, 86 (2004)
8 P. W. Lee, et al. ed., ASM Handbook Vol.7 Powder metal technologies and application, p. 712, ASM International, Materials Park, OH, USA (1998)
9 Y. Tarutani, T. Doi, A. Seki, and S. Fukuta, Patent (USA) No. US6379476 B1 (2002)
10 H. Tsuchiya and O. Kobayashi, Int. J. Hydrogen Energy 29, 985 (2004)   DOI   ScienceOn
11 P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, J. Appl. Electrochem. 30, 101 (2000)   DOI   ScienceOn
12 H. Tawfik, Y. Hung, and D. Mahajan, J. Power Sources 163, 755 (2007)   DOI   ScienceOn
13 J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed., p. 67-69, John Willey & Sons (2003)
14 S-H. Lee, J-H. Kim, M-C. Kim, D-H. Chun, and D-M Wee, J. Kor. Inst. Met. & Mater. 45, 44 (2007)
15 S. J. C. Cleghorn, X. Ren, T. E. Springer, M. S. Wilson, C. Zawodzinski, T. A. Zawodzinski, and S. Gottesfeld, Int. J. Hydrogen Energy 22, 1137 (2002)
16 D-G. Nam and H-C. Lee, J. Kor. Inst. Met. & Mater. 45, 135 (2007)
17 J. S. Cooper, J. Power Sources 129, 152 (2004)   DOI   ScienceOn