Browse > Article
http://dx.doi.org/10.1007/s13391-012-2142-7

Effect of Milling on Properties and Consolidation of $TiO_2$ by High-Frequency Induction Heated Sintering  

Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
Lee, Geon-Woo (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
Doh, Jung-Mann (Interface Control Research Center, Korea Institute of Science and Technology)
Yoon, Jin-Kook (Interface Control Research Center, Korea Institute of Science and Technology)
Publication Information
Electronic Materials Letters / v.9, no.2, 2013 , pp. 219-225 More about this Journal
Abstract
Commercial $TiO_2$ powders were high-energy ball milled for various durations and consolidated using high-frequency induction heated sintering (HFIHS). The effect of milling on the sintering behavior, crystallite size and mechanical properties of $TiO_2$ powders were evaluated. A nanostructured dense $TiO_2$ compact with a relative density of up to 98% was readily obtained within 1 min. The ball milling effectively refined the crystallite structure of $TiO_2$ powders and facilitated the subsequent densification. The sinter-onset temperature was noticeably reduced by the prior milling for 10 h. Accordingly, the relative density of $TiO_2$ compact increased as the milling time increases. Furthermore, the microhardness and fracture toughness of sintered $TiO_2$ increased as the density increases. It is clearly demonstrated that a quick densification of nano-structured $TiO_2$ bulk materials to near theoretical density could be obtained by the combination of HFIHS and the preparatory high-energy ball milling processes.
Keywords
nanomaterials; sintering; hardness; fracture toughness; $TiO_2$;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 D. J. Chen and M. J. Mayo, NanoStruct. Mater. 2, 469 (1993).   DOI
2 E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 1, 149 (2001).   DOI
3 A. Morell and A. Mermosin, Bull. Am. Ceram. Soc. 59, 626 (1980).
4 D. J. Chen and M. J. Mayo, J. Am. Ceram. Soc. 79, 906 (1996).   DOI
5 I. J. Shon, S. L. Du, I. Y. Ko, J. M. Doh, J. K. Yoon, and J. H. Park, Electron. Mater. Lett. 7, 133 (2011).   DOI
6 H.-S. Kang, I.-Y. Ko, J.-K. Yoon, J.-M. Doh, K.-T. Hong, and I.-J. Shon, Met. Mater. Int. 17, 57 (2011) .   DOI
7 I.-J. Shon, H.-Y. Song, S.-W. Cho, W. B. Kim, and C.-Y. Suh, Korean J. Met. Mater. 50, 39 (2012).   DOI
8 N. R. Park, I. Y. Ko, J. K. Yoon, J. M. Doh, and I. J. Shon, Met. Mater. Int. 17, 233 (2011).   DOI
9 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI
10 S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011).   DOI
11 C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 207, Plenum Press, New York (1998).
12 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).   DOI
13 J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004).   DOI
14 J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta. Mater. 51, 4487 (2003).   DOI
15 K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
16 K. Iketani, R. D. Sun, M. Toki, K. Hirota, and O. Yamaguchi, J. Phys. Chem. Solids 64, 507 (2003).   DOI
17 C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, J. Am. Ceram. Soc. 80, 3157 (1997).
18 C. Garzella, E. Comini, E. Bontempi, L. E. Depero, C. Frigeri, and G. Sberveglieri, Sens. Actuators B 83, 230 (2002).   DOI
19 D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, Mater. Lett. 57, 355 (2002).   DOI
20 D. Qin, W. Chang, J. Zhou, and Y. Chen, Thermochim. Acta 236, 205 (1994).   DOI
21 A. M. George, J. Iniguez, and L. Bellaiche, Nature 413, 54 (2001).   DOI
22 H. Gleiter, Nanostructured Materials 6, 3 (1995).   DOI
23 J. R. Yoon, D. J. Choi, K. H. Lee, J. Y. Lee, and Y. H. Kim, Electron. Mater. Lett. 4, 167 (2008).
24 J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).   DOI
25 T. Prakash, Electron. Mater. Lett. 8, 231 (2012).
26 C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuators B: Chemical. 3, 147 (1991).   DOI
27 D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez, D. Garcia, and B. Alascio, Journal of Magnetism and Magnetic Materials. 241, 207 (2002).   DOI
28 C. W. Nahm, C. J. Kim, Y. J. Park, B. J. Lee, and B. W. Park, Electron. Mater. Lett. 4, 5 (2008).