Browse > Article
http://dx.doi.org/10.14190/JRCR.2022.10.4.402

A Calibration Method of the CSC Model for Considering Material Properties of Ultra-high Performance Concrete  

Gang-Kyu, Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
MinJoo, Lee (Civil and Environmental Engineering, KAIST)
Sung-Wook, Kim (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
Hyun-Seop, Shin (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
Jae Heum, Moon (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
Publication Information
Journal of the Korean Recycled Construction Resources Institute / v.10, no.4, 2022 , pp. 402-410 More about this Journal
Abstract
The present study introduces a calibration method of the CSC model implemented in the LS-DYNA program for considering the material properties of ultra-high performance concrete(UHPC). Based on previous experimental studies, various parameters, which constitute three shear failure surfaces, pressure-volumetric strain curve, fracture energy, dynamic increase factor(DIF), and so on, are modified. Then, the proposed calibration method is verified by comparing the numerical result with the experimental data through the single element analysis. In addition, based on the established finite element models, the applicability of the calibrated CSC model is examined for UHPC structures subjected to impact and blast loadings.
Keywords
CSC model; Calibration method; Ultra-high performance concrete; Impact and blast analyses;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Babanajad, S.K., Farnam, Y., Shekarchi, M. (2012). Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume, Construction and Building Materials, 29, 215-229.   DOI
2 Benson, S.D.P., Karihaloo B.L. (2005). CARDIFRC - Development and mechanical properties. Part III: Uniaxial tensile response and other mechanical properties, Magazine of Concrete Research, 57(8), 433-443.   DOI
3 CEB-FIP (2010). CEB-FIP Model Code 2010, Comite EuroInternational Du Beton.
4 Chen, W.F. (2007). Plasticity in Reinforced Concrete, J. Ross Publishing.
5 Gholampour, A., Ozbakkaloglu, T. (2018). Fiber-reinforced concrete containing ultra high-strength micro steel fibers under active confinement, Construction and Building Materials, 187, 299-306.   DOI
6 Guo, W., Fan, W., Shao, X. (2018). Constitutive model of ultra-high-performance fiber-reinforced concrete for lowvelocity impact simulations, Composite Structures 185, 307-326.   DOI
7 Hassan, A.M.T., Jones, S.W., Mahmud, G.H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete(UHPFRC), Construction and building materials, 37, 874-882.   DOI
8 Jia, P.C., Wu, H., Wang, R. (2021). Dynamic responses of reinforced ultra-high performance concrete members under low-velocity lateral impact, International Journal of Impact Engineering, 150, 103818.
9 Jiang, H., Zhao, J. (2015). Calibration of the continuous surface cap model for concrete, Finite Elements in Analysis and Design, 97, 1-19.   DOI
10 Lai, J., Yang, H., Wang, H., Zheng, X., Wang, Q. (2018). Properties and modelling of ultra-high-performance concrete subjected to multiple bullet impacts, Journal of Materials in Civil Engineering, 30(10), 04018256.
11 Lee, M.J. Kwak, H.G. (2021). Numerical simulations of blast responses for SFRC slabs using an orthotropic model, Engineering Structures, 238, 112150.
12 Li, J., Wu, C., Hao, H., Wang, Z., Su, Y. (2016). Experimental investigation of ultra-high performance concrete slabs under contact explosions, International Journal of Impact Engineering, 93, 62-75.   DOI
13 Liu, J., Wu, C., Su, Y. (2018). Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts, Engineering Structures, 173, 166-179.   DOI
14 Manfred, C., Speck, K. (2008). Ultra high performance concrete under biaxial compression, Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, 477-484.
15 Murray, Y. (2007). Users Manual for LS-DYNA Concrete Material Model 159, Federal Highway Administration.
16 Naeimi, N., Moustafa, M.A. (2021). Compressive behavior and stress -strain relationships of confined and unconfined UHPC, Construction and Building Materials, 272, 121844.
17 Park, J.K., Kim, S.W., Kim, D.J. (2017). Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact, Composite Structures 162, 313-324.
18 Peng, Y., Wu, H., Fang, Q. (2016). Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs, International Journal of Impact Engineering, 97, 1-9.   DOI
19 Prabha, S.L., Dattatreya, J.K., Neelamegam, M., Seshagirirao, M.V. (2010). Study on stress-strain properties of reactive powder concrete under uniaxial compression, International Journal of Engineering Science and Technology, 2(11), 6408-6416.
20 Rao, B., Chen, L., Fang, Q., Hong, J., Liu, Z.X., Xiang, H.B. (2018). Dynamic responses of reinforced concrete beams under double-end-initiated close-in explosion, Defence Technology, 14(5), 527-539.   DOI
21 Ren, G.M., Wu, H., Fang, Q., Liu, J.Z. (2018). Effects of steel fiber content and type on static mechanical properties of UHPCC, Construction and Building Materials, 163, 826-839.   DOI
22 Ren, G.M., Wu, H., Fang, Q., Liu, J.Z., Gong, Z.M. (2016). Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses, Construction and Building Materials, 113, 1-14.   DOI
23 Saini, D., Oppong, K., Shafei, B. (2021). Investigation of concrete constitutive models for ultra-high performance fiber-reinforced concrete under low-velocity impact, International Journal of Impact Engineering, 157, 103969.
24 Scott, D.A., Graham, S.S., Songer, B.P., Green, B.H., Grotke, M.J., Brogdon, T.N. (2021). Laboratory Characterization of Cor-Tuf Baseline and UHPC-S, Geotechnical and Structures Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, U.S.
25 Sirijaroonchai, K., El-Tawil, S., Parra-Montesinos, G. (2010). Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading, Cement and Concrete Composites, 32(1), 62-72.   DOI
26 Thai D.K., Kim, S.E. (2018) Numerical investigation of the damage of RC members subjected to blast loading, Engineering Failure Analysis, 92, 350-367.
27 Tran, T.K., Kim, D.J. (2013). Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates, Cement and Concrete Research, 50, 62-73.   DOI
28 Tran, T.K., Kim, D.J. (2014). High strain rate effects on direct tensile behavior of high performance fiber reinforced cementitious composites, Cement and Concrete Composites, 45, 186-200.   DOI
29 Tufekci, M.M., Gokce, A. (2017). Development of heavyweight high performance fiber reinforced cementitious composites(HPFRCC) - Part I: Mechanical properties, Construction and Building Materials, 148, 559-570.
30 Wang, Y.Z., Wang, Y.B., Zhao, Y.Z. (2020). Experimental study on ultra-high performance concrete under triaxial compression, Construction and Building Materials, 263, 120225.
31 Williams, E.M., Graham, S.S., Reed, P.A., Rushing, T.S. (2009). Laboratory Characterization of Cor-Tuf Concrete with and without Steel Fibers, Geotechnical and Structures Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, U.S.
32 Winkelbauer, B.J. (2016). Phase I Evaluation of Selected Concrete Material in LS-DYNA. University of Nebraska. University of Nebraska-Lincoln, U.S.
33 Wu, Y., Crawford, J.E., Magallanes, J.M. (2012). Performance of LS-DYNA concrete constitutive models, 12th International LS-DYNA Users conference, 1, 1-14.
34 Wu, Z., Shi, C., He, W., Wang, D. (2017). Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements, Cement and Concrete Composites, 79, 148-157.   DOI
35 Xu, S., Wu, P., Liu, Z. (2021). Calibration of CSCM model for numerical modeling of UHPCFTWST columns against monotonic lateral loading, Engineering Structures, 240, 112396.
36 Yoo, D.Y., Kim, S.W., Park, J.J. (2017). Comparative flexural behavior of ultra-high-performance concrete reinforced with hybrid straight steel fibers, Construction and Building Materials, 132, 219-229.   DOI