Browse > Article

An Empirical Study on the Technology Innovation Distribution, Technology Imitation Distribution and New International Trade Theory  

Cho, Sang Sup (호서대학교 경영학부)
Min, Kyung Se (한밭대학교 경제학과)
Cho, Byung Sun (한국전자통신연구원)
Hwang, Ho Young (한국전자통신연구원)
Publication Information
Journal of Korea Technology Innovation Society / v.21, no.2, 2018 , pp. 860-874 More about this Journal
Abstract
This study aims at empirical analysis of the new international trade theory (Melitz, 2012, 2014, 2015). The new international trade theory is centered on the effect of heterogeneous firms on the technological competitiveness on the trade effect and resulted from the important assumption that the form of the enterprise technology distribution determines the trade effect. This study empirically estimated the distribution of enterprise technology in Korean manufacturing. For the purpose of this study, we divided Korea's total enterprise technology distribution into technological innovation and technical imitation distribution, then statistically verified the distribution type and evaluated the appropriateness of the new international trade theory. Based on the empirical results of this study, we briefly suggested the direction of technology policy.
Keywords
Malmquist Index; Technological Innovation Distribution; Technical Imitation Distribution; Difference Test in Distributions; Pareto and Lognormal Distribution; New Trade Theory;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 과학기술정책연구원 (2014), 2005년 한국기업혁신조사 : KIS2005 제조업.
2 김영규.박혜리.금혜윤.이승래 (2016), 한국의 수입구조결정요인과 기업분포에 미치는 영향, 연구보고서 16-06, 대외정책연구원.
3 조상섭.민경세 (2017), "중소벤처기업규모와 무역후생", 벤처창업연구, 12: 41-48.
4 Axtell, R. L. (2001), "Zipf Distribution of U.S. Firm Sizes", Science, 293(5536): 1818-1820.   DOI
5 Barabasi, A. L. and Albert, R. (1999), "Emergence of Scaling in Random Networks", Science, 286(5439): 509-512.   DOI
6 Bee, M. and Schiavo, S. (2015), Powerless: Gains from Trade When Firm Productivity is not Pareto Distributed, OFCE Working Paper, 2015-19.
7 Bee, M., Riccaboni, M. and Schiavo, S. (2011), "Pareto versus Lognormal: A Maximum Entropy Test", Physical Review E, 84: 102-104.
8 Bernard, A. B., Eaton, J., Jensen, J. B. and Kortum, S. S. (2003), "Plants and Productivity in International Trade", American Economic Review, 93(4): 1268-1290.   DOI
9 Bernard, A. B., Jensen, J. B., Redding, S. J. and Schott, P. K. (2007), "Firms in International Trade", Journal of Economic Perspectives, 21(3): 105-30.   DOI
10 Clauset, A, Shalizi, A. and Newman, M. (2009), "Power-law Distributions in Empirical Data", SIAM Review, 51: 661-703.   DOI
11 Combes, P. P., Duranton, G., Gobillon, L., Puga, D. and Roux, S. (2012), "The Productivity Advantages of Large Cities: Distinguishing Agglomeration from Firm Selection", Econometrica, 80(6): 2543-2594.   DOI
12 Di Giovanni, J. and Levchenko, A. A. (2013), "Firm Entry, Trade, and Welfare in Zipf's World", Journal of International Economics, 89(2): 283-296.   DOI
13 Eaton, J., Kortum, S. S. (2002), "Technology, Geography, and Trade", Econometrica, 70(5): 1741-1779.   DOI
14 Gabaix, X. (2009), "Power Laws in Economics and Finance", Annual Review of Economics, 1: 255-293.   DOI
15 Head, K., Mayer, T. and Thoenig, M. (2014), "Welfare and Trade without Pareto", American Economic Review, 104(5): 30103-30116.
16 Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, John Wiley & Sons, Inc.
17 Melitz, M. J. (2003), "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity", Econometrica, 71: 1695-1725.   DOI
18 Melitz, M. J. and Redding, S. J. (2015), "New Trade Models, New Welfare Implications", American Economic Review, 105(3): 1105-1146.   DOI
19 Melitz, M. J. and Daniel, T. (2012), "Gains from Trade when Firms Matter", Journal of Economic Perspectives, 26(2): 91-118.   DOI
20 Melitz, M. J. and Stephen, J. R. (2014), "Missing Gains from Trade?", American Economic Review, 104(5): 317-21.   DOI
21 Pisarenko, V. and Sornette, D. (2006), "New Statistic for Financial Return Distributions: Power Law or Exponential?", Physica A, 366: 387-400.   DOI
22 Reed, W. and Hughes, B. (2002), "From Gene Families and Genera to Incomes and Internet File Sizes: Why Power Laws are So Common in Nature", Physical Review E, 66: 067103.   DOI
23 Rossi-Hansberg, E. and Wright, M. L. (2007), "Establishment Size Dynamics in the Aggregate Economy", American Economic Review, 97(5): 1639-1666.   DOI
24 Simon, H. (1955), "On a Class of Skew Distribution Functions", Biometrika, 42 (3-4): 425.   DOI
25 Virkar, Y. and Clauset, A. (2014), "Power-law Distributions in Binned Empirical Data", Annals of Applied Statistics, 8(1): 89-119.   DOI