Browse > Article

Morphological Variation and Partial Mitochondrial Sequence Analysis of Echinoid Species from the Coasts of the East Sea  

Shin, Ji-Hye (Faculty of Marine Bioscience and Technology, Kangnung National University)
Kim, Sung-Gyu (Faculty of Marine Bioscience and Technology, Kangnung National University)
Kim, Young-Dae (East Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
Sohn, Young-Chang (Faculty of Marine Bioscience and Technology, Kangnung National University)
Publication Information
Journal of Aquaculture / v.21, no.3, 2008 , pp. 139-145 More about this Journal
Abstract
Morphological classification of echinoid species has many difficulties because of their phenotypic variations. In the present study, we analyzed morphotypes and partial mitochondrial 12S rDNA sequences of four sea urchin species classified as Pseudocentrotus depressus, Anthocidaris crassispina, Hemicentrotus pulcherrimus and Strongylocentrotus nudus, and unidentified four species collected from the coasts of the East sea. Their genomic DNAs were extracted from gonads and mitochondrial 12S rDNA sequences were amplified by the polymerase chain reaction (PCR) method. The sequence identities among the known four sea urchin species were 87.4-95.6%. The sequence identities among the unidentified four species were 99.4-99.6% and showed the highest homology to S. intermedius(99.8%). Thus, our phylogenetic tree indicates that the unidentified four species belong to S. intermedius.
Keywords
Genomic DNA; Mitochondrial 12S rDNA; PCR; Phylogenetic analysis; Sea urchins;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bazhin, A. G., 1998. The Sea Urchin Genus Strongylocentrotus in the Seas of Russia Taxonomy and Range. Balkema, Rotterdam, pp. 563-566
2 Sambrook, J. and D. W. Russell, 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring, NY: Cold Spring Harbor Laboratory Press
3 Tatarenko, D. E. and A. B. Poltaraus, 1991. Classification of the sea urchins Strongylocentrotus echinoides and S. sachalinicus as S. pallidus on the strength of genome comparison. Biol. Morya Mar. Biol., 3, 69-75
4 Tatarenko, D. E. and A. B. Poltaraus, 1992. Affiliation of the sea urchins Strongylocentrotus echinoides and S. sachalinicus to the species S. pallidus based on a comparison of their genomes. Russ. J. Mar. Biol., 17, 168-172
5 Vaitilingon, D., I. Eeckhaut, D. Fourgon and M. Jangoux, 2004. Population dynamics, infestation and host selection of Vexilla vexillum, an ectoparasitic muricid of echinoids, in Madagascar. Dis. Aquat. Organ., 61, 241-255   DOI
6 NFRDI. 2005. A Study on construction of seaweed forest in the East Sea. Final Report on Fisheries Life Sciences and Aquaculture Sciences. National Fisheries R & D Institute, pp. 5-50
7 Thomas, W. K., J. Maa and A. C. Wilson, 1989. Shifting constraints on tRNA genes during mitochondrial DNA evolution in animals. New. Biol., 1, 93-100
8 Kessing, B. D., 1990. Concurrent speciation in template sea urchin lineages. Pac. Sci., 44, 188-195
9 Takata, H. and T. Kominami, 2004. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos. Zoolog. Sci., 21,1025-1035   DOI   ScienceOn
10 Littlewood, D. T. and A. B. Smith, 1995. A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermate). Philos. Trans. R. Soc. Lond. B. Biol. Sci., 347, 213-234   DOI   ScienceOn
11 Shin, S., 2000. New record of two Echinoids (Echinodermate, Echinoidea) in Korea. Kor. J. Syst. Zool., 16, 219-226   과학기술학회마을
12 Lee, J. J., B. K. Kim, S. K. Kang, S. C. Chung, K. W. Lee and K. S. Choi, 2000. Reproductive ecology and genetic variations in the sea urchins Anthocidaris crassispina and Hemicentrotus pulcherrimus in the Cheju Coast. J. Aquacult., 13, 129-135
13 신숙, 노분조. 1996. 한국동식물도감. 제 36권 동물편(극피동물), 교육부, 서울, 775 pp
14 Pyo, J. W., H. S. Kwon and S. Shin, 2005. Sequence analysis of three Echinoderm species and phylogenetic relation ship of Korean Echinoderms based on mitochondrial 12S rDNA gene. J. Life Sci., 13, 38-46
15 Levine, M. and E. H. Davidson, 2005. Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA., 102, 4936-4942
16 Saitou, N. and M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenic trees. Mol. Biol. Evol., 4, 406-425
17 Cummings, A. and R. Kavlock, 2005. A systems biology approach to developmental toxicology. Reprod. Toxicol., 19, 281-290   DOI   ScienceOn
18 Lee, Y. H., 2003. Molecular Phylogenies and divergence times of sea urchin species of Strongylocentrotidae, Echinoida. Mol. Biol. Evol., 20, 1211-1221   DOI   ScienceOn
19 Kwon, H. S., J. W. Pyo and S. Shin, 2004. Sequence analysis of mitochondrial 12S rDNA gene and molecular phylogeny of Korea echinoid species. Sahmyook Univ. J. 39, 341-348
20 McMillan, W. O., R. A. Raff and S. R. Palumbi, 1992. Population genetic consequences of development evolution in sea urchins (Genus Heiocidaris). Evolution, 46, 1299-1312   DOI   ScienceOn
21 Takata, H. and T. Kominami, 2003. Behavior of differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei. Dev. Growth Differ., 45, 473-483   DOI   ScienceOn
22 NFRDI. 2006. A Study on Construction of Seaweed Forest in the East Sea. Final Report on Fisheries Life Sciences and Aquaculture Sciences. National Fisheries R & D Institute, pp. 521-696
23 Matsubara, M., Komatsu M., Araki T., Asakawa S., Yokobori S., Watanabe, K. and Wada, H. 2005. The Phylogenetic status of Paxillosida (Asteroidea) based on complete mitochondrial DNA sequences. Mol. Phylogenet. Evol., 36, 598-605   DOI   ScienceOn