Browse > Article
http://dx.doi.org/10.14695/KJSOS.2022.25.3.47

Affective Responses to ASMR Using Multidimensional Scaling and Classification  

Kim, Hyeonjung (전북대학교 심리학과)
Kim, Jongwan (전북대학교 심리학과)
Publication Information
Science of Emotion and Sensibility / v.25, no.3, 2022 , pp. 47-62 More about this Journal
Abstract
Previous emotion studies revealed the two core affective dimensions of valence and arousal using affect-eliciting stimuli, such as pictures, music, and videos. Autonomous sensory meridian response (ASMR), a type of stimuli that has emerged recently, produces a sense of psychological stability and calmness. We explored whether ASMR could be represented on the core affect dimensions. In this study, we used three affective types ASMR (negative, neutral, and positive) as stimuli. Auditory ASMR videos were used in Study 1, while auditory and audiovisual ASMR videos were used in Study 2. Participants were asked to rate how they felt about the ten adjectives using five-point Likert scales. Multidimensional scaling (MDS) and classification analyses were performed. The results of the MDS showed that distinctions between auditory and audiovisual ASMR videos were represented well in the valence dimension. Additionally, the results of the classification showed that affective conditions within and across individuals for within- and cross-modalities. Thus, we confirmed that the affective representations for individuals could be predicted and that the affective representations were consistent between individuals. These results suggest that ASMR videos, including other affect-eliciting videos, were also located in the core affect dimension space, supporting the core affect theory (Russell, 1980).
Keywords
ASMR; Classification; Core Affect; Multidimensional Scaling;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim, J., Weber, C. E., Gao, C., Schuleis, S., Wedell, D. H., & Shinkareva, S. V. (2020). A study in affect: Predicting valence from fMRI data. Neuropsychologia, 143, 107473.   DOI
2 Kim, J. & Wedell, D. H. (2016). Comparison of physiological responses to affect eliciting pictures and music. International Journal of Psychophysiology, 101, 9-17. DOI: 10.1016/j.ijpsycho.2015.12.011   DOI
3 Putkinen, V., Nazari-Farsani, S., Seppala, K., Karjalainen, T., Sun, L., Karlsson, H. K., Hundson, M., Heikkila, T.T., Hirvonen, J., & Nummenmaa, L. (2021). Decoding music-evoked emotions in the auditory and motor cortex. Cerebral Cortex, 31(5), 2549-2560.   DOI
4 Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161. DOI: 10.1037/h0077714   DOI
5 Russell, J. A. & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76(5), 805. DOI: 10.1037/0022-3514.76.5.805   DOI
6 Sachs, M. E., Habibi, A., Damasio, A., & Kaplan, J. T. (2018). Decoding the neural signatures of emotions expressed through sound. Neuroimage, 174, 1-10.   DOI
7 Shinkareva, S. V., Gao, C., & Wedell, D. (2020). Audiovisual representations of valence: A cross-study perspective. Affective Science, 1(4), 237-246.   DOI
8 Shinkareva, S. V., Wang, J., Kim, J.,Facciani, M. J., Baucom, L. B., & Wedell, D. H. (2014). Representations of modality-specific affective processing for visual and auditory stimuli derived from functional magnetic resonance imaging data. Human Brain Mapping, 35(7), 3558-3568. DOI: 10.1002/HBM.22421   DOI
9 Shinkareva, S. V., Wang, J., & Wedell, D. H. (2013). Examining similarity structure: Multidimensional scaling and related approaches in neuroimaging. Computational and Mathematical Methods in Medicine, 2013. DOI: 10.1155/2013/796183   DOI
10 Kim, J., Wedell, D. H., & Shinkareva, S. V. (2018) Identification of task sets within and across stimulus modalities. Neuropsychologia, 113, 78-84   DOI
11 Fredborg, B. K., Clark, J. M., & Smith, S. D. (2018). Mindfulness and autonomous sensory meridian response (ASMR). PeerJ, 6, e5414. DOI: 10.7717/peerj.5414   DOI
12 Gomes, C. F. A., Brainerd, C. J., & Stein, L. M. (2013). Effects of emotional valence and arousal on recollective and nonrecollective recall. Journal of Experimental Psychology: Learning Memory and Cognition, 39(3), 663-677. DOI: 10.1037/a0028578   DOI
13 Gomez, P. & Danuser, B. (2004). Affective and physiological responses to environmental noises and music. International Journal of Psychophysiology, 53(2), 91-103. DOI: 10.1016/j.ijpsycho.2004.02.002   DOI
14 Gomez, P., Zimmermann, P., Guttormsen-Schar, S., & Danuser, B. (2005). Respiratory responses associated with affective processing of film stimuli. Biological Psychology, 68(3), 223-235. DOI: 10.1016/j.biopsycho.2004.06.003   DOI
15 Haynes, J. D. & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523-534. DOI: 10.1038/nrn1931   DOI
16 Kensinger, E. A. & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3310-3315. DOI: 10.1073/pnas.0306408101   DOI
17 Kim, J. (2021). Representation of facial expressions of different ages: A multidimensional scaling study. Science of Emotion and Sensibility, 24(3), 71-80. DOI: 10.14695/KJSOS.2021.24.3.71   DOI
18 Kim, J., Shinkareva, S. V., & Wedell, D. H. (2017) . Representations of modality-general valence for videos and music derived from fMRI data. NeuroImage, 148, 42-54. DOI: 10.1016/J.NEUROI MAGE.2017.01.002   DOI
19 Smith, N. & Snider, A. M. (2019). ASMR, affect and digitally-mediated intimacy. Emotion, Space and Society, 30, 41-48. DOI: 10.1016/j.emospa.2018.11.002   DOI
20 Sin, M. A. & Yun, J. Y. (2019). Convergent study of the effect of online advertising design using ASMR (Autonomous Sensory Meridian Response). The Korean Society of Science & Art, 37(3), 243-253.   DOI
21 Viinikainen, M., Kaatsyri, J., & Sams, M. (2012). Representation of perceived sound valence in the human brain. Human Brain Mapping, 33(10), 2295-2305. DOI: 10.1002/hbm.21362   DOI
22 Weaverdyck, M. E., Lieberman, M. D., & Parkinson, C. (2020). Tools of the trade multivoxel pattern analysis in fMRI: A practical introduction for social and affective neuroscientists. Social Cognitive and Affective Neuroscience, 15(4), 487-509. DOI:10.1093/scan/nsaa057   DOI
23 Baucom, L. B., Wedell, D. H., Wang, J., Blitzer, D. N., & Shinkareva, S. V. (2012). Decoding the neural representation of affective states. NeuroImage, 59(1), 718-727. DOI: 10.1016/j.neuroimage.2011.07.037   DOI
24 Gomez, P., Stahel, W. A., & Danuser, B. (2004). Respiratory responses during affective picture viewing. Biological Psychology, 67(3), 359-373. DOI: 10.1016/j.biopsycho.2004.03.013   DOI
25 Barratt, E. L. & Davis, N. J. (2015). Autonomous sensory meridian response (ASMR): A flow-like mental state. PeerJ, 3. DOI: 10.7717/peerj.851   DOI
26 Barrett, L. F. & Bliss-Moreau, E. (2009). Affect as a psychological primitive. In Advances in Experimental Social Psychology, 41, 167-218. DOI: 10.1016/S0065-2601(08)00404-8   DOI
27 Bernat, E., Patrick, C. J., Benning, S. D., & Tellegen, A. (2006). Effects of picture content and intensity on affective physiological response. Psychophysiology, 43(1), 93-103. DOI: 10.1111/j.1469-8986.2006.00380.x   DOI
28 Chanel, G., Ansari-Asl, K., & Pun, T. (2007, October). Valence-arousal evaluation using physiological signals in an emotion recall paradigm. In 2007 IEEE International Conference on Systems, Man and Cybernetics (pp. 2662-2667). IEEE. DOI: 10.1109/ICSMC.2007.4413638   DOI
29 Botien, F. A. (1998). The effects of emotional behaviour on components of the respiratory cycle. Biological Psychology, 49(1-2), 29-51. DOI: 10.1016/S0301-0511(98)00025-8   DOI
30 Bradley, M. M. & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology, 37(2), 204-215. DOI: 10.1111/1469-8986.3720204   DOI
31 Chikazoe, J., Lee, D., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience, 17(8), 1114-1122. DOI: 10.1038/nn.3749   DOI
32 Codispoti, M., Bradley, M. M., & Lang, P. J. (2001). Affective reactions to briefly presented pictures. Psychophysiology, 38(3), 474-478. DOI: 10.1111/1469-8986.3830474   DOI
33 Dalenberg, J. R., Weitkamp, L., Renken, R. J., & Ter Horst, G. J. (2018). Valence processing differs across stimulus modalities. NeuroImage, 183, 734-744. DOI: 10.1016/j.neuroimage.2018.08.059   DOI
34 Lochte, B., Guillory, S., Richard, C., & BI, W. K. (2018). An fMRI investigation of the neural correlates underlying the autonomous sensory meridian response (ASMR). BioImpacts, 8(4), 295-304. DOI:10.15171/bi.2018.32   DOI
35 Kim, M. H. & Min, K. H. (2004). Emotional experience and emotion regulation in old age. Korean Journal of Psychology General, 23(2), 1-21.
36 Ko Wai, C. (2020). Phenomenological study about enhancing university student's psychosocial wellbeing through YouTube videos: Autonomous Sensory Meridian Response (ASMR) in Finland. (Unpublished master's thesis). University of Lapland, Rovaniemi, Finland Retrieved from https://lauda.ulapland.fi/handle/10024/64317
37 Myun, K. G. & Kim, E. (2017). The effects of white noise on sleep quality, depression and stress in university students. Journal of Korean Academic Society of Home Health Care Nursing, 24(3), 316-324   DOI
38 Larsen, J. T., Norris, C. J., & Cacioppo, J. T. (2003). Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology, 40(5), 776-785. DOI: 10.1111/1469-8986.00078   DOI
39 Lee, J. & Kim, J. (2019). Analysis of the relaxing effect of ASMR sound contents. The Institute of Electronics and Information Engineers, 56(3), 139-145.   DOI
40 Poerio, G. L., Blakey, E., Hostler, T. J., & Veltri, T. (2018). More than a feeling: Autonomous sensory meridian response (asmr) is characterized by reliable changes in affect and physiology. PLoS ONE, 13(6). DOI: 10.1371/journal.pone.0196645   DOI
41 Peelen, M., Atkinson, A., & Vuilleumier, P. (2010). Supramodal representations of perceived emotions in the human brain. Journal of Neuroscience, 30(30), 10127-10134. DOI: 10.1523/JNEUROSCI.2161-10.2010   DOI