Browse > Article
http://dx.doi.org/10.14695/KJSOS.2022.25.1.55

The Effect of Dissonant Chord on Cognitive Interference and Emotion  

Kim, JayHee (연세대학교 인지과학 협동과정)
Han, KwangHee (연세대학교 심리학과)
Publication Information
Science of Emotion and Sensibility / v.25, no.1, 2022 , pp. 55-66 More about this Journal
Abstract
Many studies have shown that musical dissonance generally evokes negative affect, but few studies detail how distinct dissonant intervals, ranging in various roughness, influence emotions and cognition. This research entailed two experiments to confirm whether varying musical intervals of dissonance trigger particular negative emotions and increase cognitive interference. Experiment 1 assumed that different dissonant intervals would elicit distinct negative emotions. In a survey involving 131 participants, there was an overwhelming consensus that dissonant intervals elicited stronger high arousal negative affect than low arousal negative affect. The major 7th degree was found to evoke a significantly stronger feeling of scared. Experiment 2 investigated whether emotions-affecting dissonance would have an enhancing effect on cognitive interference. According to a color-word Stroop task conducted on 81 participants, the presence of any dissonant sound caused significantly higher reaction times and error rates than in the absence of sound. In particular, the minor 2nd degree was cognitively the most disruptive and associated with the slowest reaction times. This paper shows how different ranges of dissonance can effectively influence negative affect and heighten cognitive interference.
Keywords
Dissonance and Consonance; Cognitive Interference; Negative Affect; Music Cognition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bakker, D. R., & Martin, F. H. (2015). Musical chords and emotion: Major and minor triads are processed for emotion. Cognitive, Affective, & Behavioral Neuroscience, 15(1), 15-31. DOI: 10.3758/s13415-014-0309-4   DOI
2 Bidelman, G. M. (2013). The role of the auditory brainstem in processing musically relevant pitch. Frontiers in psychology, 4, 264. DOI: 10.3389/fpsyg.2013.00264   DOI
3 Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting Stroop: An interference task specialized for functional neuroimaging-validation study with functional MRI. Human Brain Mapping, 6(4), 270-282. DOI: 10.1002/(SICI)1097-0193(1998)6:4<270::AID-HBM6>3.0.CO;2-0   DOI
4 Chan, M., & Singhal, A. (2015). Emotion matters: Implications for distracted driving. Safety Science, 72, 302-309. DOI: 10.1016/j.ssci.2014.10.002   DOI
5 Costa, M., Fine, P., & Ricci Bitti, P. E. (2004). Interval distributions, mode, and tonal strength of melodies as predictors of perceived emotion. Music Perception, 22(1), 1-14. DOI: 10.1525/mp.2004. 22.1.1   DOI
6 Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-4), 169-200. DOI: 10.1080/02699939208411068   DOI
7 Helmholtz, H. L. (1885/1954). On the Sensations of Tone as a Physiological Basis for the Theory of Music. A.J. Ellis, Trans, Dover Publications (Ed.), New York: Cambridge University Press.
8 Kim, S. G., Lepsien, J., Fritz, T. H., Mildner, T., & Mueller, K. (2017). Dissonance encoding in human inferior colliculus covaries with individual differences in dislike of dissonant music. Scientific Reports, 7(1), 1-10. DOI: 10.1038/s41598-017-06105-2   DOI
9 Komeilipoor, N., Rodger, M. W., Craig, C. M., & Cesari, P. (2015). (Dis-) Harmony in movement: effects of musical dissonance on movement timing and form. Experimental Brain Research, 233(5), 1585-1595. DOI: 10.1007/s00221-015-4233-9   DOI
10 Athanasopoulos, G., Eerola, T., Lahdelma, I., & Kaliakatsos-Papakostas, M. (2021) Harmonic organisation conveys both universal and culture specific cues for emotional expression in music. PLoS ONE, 16(1), e0244964. DOI: 10.1371/journal.pone.0244964   DOI
11 Hevner, K. (1936). Experimental studies of the elements of expression in music. The American Journal of Psychology, 48(2), 246-268. DOI: 10.2307/1415746   DOI
12 Bonin, T., & Smilek, D. (2016). Inharmonic music elicits more negative affect and interferes more with a concurrent cognitive task than does harmonic music. Attention, Perception & Psychophysics, 78(3), 946-959. DOI: 10.3758/s13414-015-1042-y   DOI
13 Kwak, S. Y. (1999). Cognition of dissonance: Specifically on double pure tone, (Doctoral dissertation) Korea University, Seoul, Republic of Korea. Retrieved from http://www.riss.kr/
14 Fredrickson, B. L. (2004). The broaden-and-build theory of positive emotions. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1449), 1367-1377. DOI: 10.1098/rstb.2004.1512   DOI
15 Lahdelma, I., & Eerola, T. (2016). Single chords convey distinct emotional qualities to both naive and expert listeners. Psychology of Music, 44(1), 37-54. DOI: 10.1177/0305735614552006   DOI
16 Masataka, N., & Perlovsky, L. (2013). Cognitive interference can be mitigated by consonant music and facilitated by dissonant music. Scientific Reports, 3(1), 1-6. DOI: 10.1038/srep02028   DOI
17 Pereira, A. G., Cruz, A., Lima, S. Q., & Moita, M. A. (2012). Silence resulting from the cessation of movement signals danger. Current Biology, 22(16), R627-R628. DOI: 10.1016/j.cub.2012.06.015   DOI
18 Schroeter, M. L., Zysset, S., Wahl, M., & von Cramon, D. Y. (2004). Prefrontal activation due to Stroop interference increases during development-an event-related fNIRS study. Neuroimage, 23(4), 1317-1325. DOI: 10.1016/j.neuroimage.2004.08.001   DOI
19 Lee, S. W. (2001). 협화음과 불협화음[Consonance and Dissonance], Nangman Eumak, 191-228.
20 Lee, K. M., Skoe, E., Kraus, N., & Ashley, R. (2015). Neural transformation of dissonant intervals in the auditory brainstem. Music Perception: An Interdisciplinary Journal, 32(5), 445-459. DOI: 10.1525/mp.2015.32.5.445   DOI
21 Moser, S. J., Cutini, S., Weber, P., & Schroeter, M. L. (2009). Right prefrontal brain activation due to Stroop interference is altered in attention-deficit hyperactivity disorder-a functional near-infrared spectroscopy study. Psychiatry Research: Neuroimaging, 173(3), 190-195. DOI: 10.1016/j.pscychresns.2008.10.003   DOI
22 Pallesen, K. J., Brattico, E., Bailey, C., Korvenoja, A., Koivisto, J., Gjedde, A., & Carlson, S. (2005). Emotion processing of major, minor, and dissonant chords: A functional magnetic resonance imaging study. Annals of the New York Academy of Sciences, 1060(1), 450-453. DOI: 10.1196/annals.1360.047   DOI
23 Plomp, R., & Levelt, W. J. M. (1965). Tonal consonance and critical bandwidth. The Journal of the Acoustical Society of America, 38(4), 548-560. DOI: 10.1121/1.1909741   DOI
24 Sammler, D., Grigutsch, M., Fritz, T., & Koelsch, S. (2007). Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology, 44(2), 293-304. DOI: 10.1111/j.1469-8986.2007.00497.x   DOI
25 Sanada, M., Kuwamoto, T., & Katayama, J. I. (2021). Deviant consonance and dissonance capture attention differently only when task demand is high: An ERP study with three-stimulus oddball paradigm. International Journal of Psychophysiology, 166, 1-8. DOI: 10.1016/j.ijpsycho.2021.04.008   DOI
26 Song, M. K. (2018), 연주자를 위한 조성 음악 분석 2[Analysis of tonal music for musical players 2], Yesol, Seoul.
27 Sloboda, J. A., & Juslin, P. N. (2001). Psychological perspectives on music and emotion. In P. N. Juslin & J. A. Sloboda (Eds.), Music and emotion: Theory and research, Oxford University Press.
28 Hargreaves, D. J., & North, A. C. (1999). The functions of music in everyday life: Redefining the social in music psychology. Psychology of Music, 27(1), 71-83. DOI: 10.1177/0305735699271007   DOI
29 Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. Journal of Personality and Social Psychology, 52(6), 1122-1131. DOI: 10.1037/0022-3514.52.6.1122   DOI
30 Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161. DOI: 10.1037/h0077714   DOI
31 Salters-Pedneault, K., Gentes, E., & Roemer, L. (2007). The role of fear of emotion in distress, arousal, and cognitive interference following an emotional stimulus. Cognitive Behaviour Therapy, 36(1), 12-22. DOI: 10.1080/16506070600874281   DOI
32 Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98(2), 219. DOI: 10.1037/0033-2909.98.2.219   DOI
33 Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of personality and social psychology, 54(6), 1063. DOI: 10.1037/0022-3514.54.6.1063   DOI
34 Storbeck, J., & Clore, G. L. (2007). On the interdependence of cognition and emotion. Cognition and Emotion, 21(6), 1212-1237. DOI: 10.1080/ 02699930701438020   DOI
35 Watson, D. (1988). The vicissitudes of mood measurement: effects of varying descriptors, time frames, and response formats on measures of positive and negative affect. Journal of Personality and Social Psychology, 55(1), 128. DOI: 10.1037/0022-3514.55.1.128   DOI
36 Koelsch, S., Fritz, T., V. Cramon, D. Y., Muller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239-250. DOI: 10.1002/hbm.20180   DOI