Browse > Article
http://dx.doi.org/10.14695/KJSOS.2018.21.4.43

Effect of Simulator Sickness Caused by Head-mounted Display on the Stability of the Pupillary Rhythm  

Park, Sangin (Industry-Academy Cooperation Foundation, Sangmyung University)
Lee, Don Won (Department of Emotion Engineering, Sangmyung University)
Mun, Sungchul (CJ Hello Future Engine Lab., CJ Hello)
Kim, Hong-Ik (Technology Officer, CJ Hello)
Whang, Mincheol (Department of Intelligent Engineering Informations for Human, Sangmyung University)
Publication Information
Science of Emotion and Sensibility / v.21, no.4, 2018 , pp. 43-54 More about this Journal
Abstract
The aim of this study is to determine the effect of motion sickness on pupil rhythm. Sixteen volunteers of both genders (8 male, 8 female, mean age $25.67{\pm}2.43$ years) experienced VR contents in both 2D and HMD versions for 15 minutes, and their pupillary rhythms were compared. The irregular pattern of the pupillary rhythms, as demonstrated by increasing mean pupil diameter (mPD) and standard deviation of the pupil diameter (sPD), revealed motion sickness after experiencing HMD condition. The pupillary response is strongly related to the cognitive load, and the motion sickness can be interpreted as a change in the cognitive load caused by the increasing volume of visual information that must be processed and the conflict or inconsistency between different sensory modalities. The method proposed in this study could be a non-contact measurement method for the monitoring of motion sickness using a web-camera rather than previous sensor-based methods.
Keywords
Motion Sickness; Pupillary Response; Non-contact Measurement; Cognitive Load; Head Mounted Display (HMD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Toschi, N., Kim, J., Sclocco, R., Duggento, A., Barbieri, R., Kuo, B., & Napadow, V. (2017). Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions. Autonomic Neuroscience, 202, 108-113. DOI: 10.1016/j.autneu.2016.10.003   DOI
2 Van den Brink, R. L., Murphy, P. R., & Nieuwenhuis, S. (2016). Pupil diameter tracks lapses of attention. PloS One, 11(10), e0165274. DOI: 10.1371/journal.pone.0165274   DOI
3 Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality, 9(2), 1-20.
4 Van Steenbergen, H., & Band, G. P. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7, 215. DOI: 10.3389/fnhum.2013.00215
5 Wang, Y. (2013). An investigation of visual field test parameters in glaucoma, patterns of visual field loss in diabetics and multispectral imaging of the optic nerve head in glaucoma (Doctoral dissertation, The University of Manchester (United Kingdom)).
6 Yokota, Y., Aoki, M., Mizuta, K., Ito, Y., & Isu, N. (2005). Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Oto-laryngologica, 125(3), 280-285. DOI: 10.1080/00016480510003192   DOI
7 Chen, S., & Epps, J. (2014). Using task-induced pupil diameter and blink rate to infer cognitive load. Human-Computer Interaction, 29(4), 390-413. DOI: 10.1080/07370024.2014.892428   DOI
8 Buckner, R. L. (2013). The brain's default network: origins and implications for the study of psychosis. Dialogues in Clinical Neuroscience, 15(3), 351-358.
9 Carnegie, K., & Rhee, T. (2015). Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Computer Graphics and Applications, 35(5), 34-41. DOI: 10.1109/MCG.2015.98   DOI
10 Chardonnet, J. R., Mirzaei, M. A., & Merienne, F. (2017). Features of the Postural Sway Signal as Indicators to Estimate and Predict Visually Induced Motion Sickness in Virtual Reality. International Journal of Human-Computer Interaction, 1-15. DOI: 10.1080/10447318.2017.1286767
11 Chuang, S. W., Chuang, C. H., Yu, Y. H., King, J. T., & Lin, C. T. (2016). EEG alpha and gamma modulators mediate motion sickness-related spectral responses. International Journal of Neural Systems, 25(2), 14. DOI: 10.1142/S0129065716500076
12 Geva, R., Zivan, M., Warsha, A., & Olchik, D. (2013). Alerting, orienting or executive attention networks: differential patters of pupil dilations. Frontiers in Behavioral Neuroscience, 7, 145(1)-145(11). DOI: 10.3389/fnbeh.2013.00145
13 Daugman, J. (2004). Iris recognition border-crossing system in the UAE. International Airport Review, 8(2), 49-53.
14 Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50(272), 1096-1121. DOI: 10.1080/01621459.1955.10501294   DOI
15 Ebitz, R. B., & Platt, M. L. (2015). Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupillinked arousal. Neuron, 85(3), 628-640. DOI: 10.1016/j.neuron.2014.12.053   DOI
16 Jeong, S. H. (2010). Motion sickness. Korean Journal of Aerospace and Environmental Medicine, 19(3), 87-90.
17 Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin, 47(5), 507-516. DOI: 10.1016/S0361-9230(98)00091-4   DOI
18 Hong, L., Walz, J. M., & Sajda, P. (2014). Your eyes give you away: Prestimulus changes in pupil diameter correlate with poststimulus task-related EEG dynamics. PloS One, 9(3), e91321. DOI: 10.1371/journal.pone.0091321   DOI
19 Huck, S. W., Cormier, W. H., & Bounds, W. G. (1974). Reading statistics and research (pp. 74-102). New York: Harper & Row.
20 Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221-234. DOI: 10.1016/j.neuron.2015.11.028   DOI
21 Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., Kowalchuk, R. K., Lowman, L. L., Petoskey, M. D., Keselman, J. C., & Levin, J. R. (1998). Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of Educational Research, 68(3), 350-386. DOI: 10.3102/00346543068003350   DOI
22 Junior, E. D. D. S., Da Silva, A. V., Da Silva, K. R., Haemmerle, C. A., Batagello, D. S., Da Silva, J. M., Lima, L. B., Da Silva, R. J., Diniz, G. B., Sita, L. V., Elias, C. F., & Bittencourt, J. C. (2015). The centrally projecting Edinger–Westphal nucleus-I: Efferents in the rat brain. Journal of Chemical Neuroanatomy, 68, 22-38. DOI: 10.1016/j.jchemneu.2015.07.002   DOI
23 Just, M. A., & Carpenter, P. A. (1993). The intensity dimension of thought: pupillometric indices of sentence processing. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Experimentale, 47(2), 310-339. DOI: 10.1037/h0078820   DOI
24 Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., & Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 114-116. DOI: 10.1126/science.274.5284.114
25 Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220. DOI: 10.1207/s15327108ijap0303_3   DOI
26 Kennedy, R. S., Drexler, J., & Kennedy, R. C. (2010). Research in visually induced motion sickness. Applied Ergonomics, 41(4), 494-503. DOI: 10.1016/j.apergo.2009.11.006   DOI
27 Kesim, M., & Ozarslan, Y. (2012). Augmented reality in education: current technologies and the potential for education. Procedia-Social and Behavioral Sciences, 47, 297-302. DOI: 10.1016/j.sbspro.2012.06.654   DOI
28 Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616-625. DOI: 10.1111/j.1469-8986.2005.00349.x   DOI
29 Andreassi, J. L. (2013). Psychophysiology: Human behavior & physiological response. Psychology Press.
30 Bailenson, J., Patel, K., Nielsen, A., Bajscy, R., Jung, S. H., & Kurillo, G. (2008). The effect of interactivity on learning physical actions in virtual reality. Media Psychology, 11(3), 354-376. DOI: 10.1080/15213260802285214   DOI
31 Kiryu, T., Tada, G., Toyama, H., & Iijima, A. (2008). Integrated evaluation of visually induced motion sickness in terms of autonomic nervous regulation. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, 4597-4600. DOI: 10.1109/IEMBS.2008.4650237
32 Klingner, J., Kumar, R., & Hanrahan, P. (2008, March). Measuring the task-evoked pupillary response with a remote eye tracker. In Proceedings of the 2008 Symposium on Eye Tracking Research & Applications, 69-72. DOI: 10.1145/1344471.1344489
33 Lee, E. C., Park, K. R., Whang, M., & Min, K. (2009). Measuring the degree of eyestrain caused by watching LCD and PDP devices. International Journal of Industrial Ergonomics, 39(5), 798-806. DOI: 10.1016/j.ergon.2009.02.008   DOI
34 Beatty, J. (1988). Pupillometric signs of selective attention in man. Neurophysiology and psychophysiology: Experimental and clinical applications, 138-143.
35 Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. Communication in the Age of Virtual Reality, 15, 57-124.
36 Bouchard, S., Robillard, G., Renaud, P., & Bernier, F. (2011). Exploring new dimensions in the assessment of virtual reality induced side effects. Journal of Computer and Information Technology, 1(3), 20-32.
37 Krause, C. M., Pesonen, M., Haarala Bjornberg, C., & Hamalainen, H. (2007). Effects of pulsed and continuous wave 902 MHz mobile phone exposure on brain oscillatory activity during cognitive processing. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine. The European Bioelectromagnetics Association, 28(4), 296-308. DOI: 10.1002/bem.20300   DOI
38 Lambooij, M.T.M., Fortuin, M., Heynderick, I., Ijsselsteijn, W. (2009). Visual discomfort and visual fatigue of stereoscopic displays: a review. Journal of Imaging Science and Technology, 53(3), 1-14. DOI: 10.2352/J.ImagingSci.Technol.2009.53.3.030201   DOI
39 Merhi, O., Faugloire, E., Flanagan, M., & Stoffregen, T. A. (2007). Motion sickness, console video games, and head-mounted displays. Human Factors, 49(5), 920-934. DOI: 10.1518/001872007X230262   DOI
40 Mun, S., Park, M. C., Park, S., & Whang, M. (2012). SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D. Neuroscience Letters, 525(2), 89-94. DOI: 10.1016/j.neulet.2012.07.049   DOI
41 Mun, S., Kim, E. S., & Park, M. C. (2014). Effect of mental fatigue caused by mobile 3D viewing on selective attention: An ERP study. International Journal of Psychophysiology, 94(3), 373-381. DOI: 10.1016/j.ijpsycho.2014.08.1389   DOI
42 Kozicz, T., Bittencourt, J. C., May, P. J., Reiner, A., Gamlin, P. D., Palkovits, M., ... & Ryabinin, A. E. (2011). The Edinger‐Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. Journal of Comparative Neurology, 519(8), 1413-1434. DOI: 10.1002/cne.22580   DOI
43 Ong, S. K., & Nee, A. Y. C. (2013). Virtual and augmented reality applications in manufacturing. Springer Science & Business Media.
44 Nalivaiko, E., Davis, S. L., Blackmore, K. L., Vakulin, A., & Nesbitt, K. V. (2015). Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiology & Behavior, 151, 583-590. DOI: 10.1016/j.physbeh.2015.08.043   DOI
45 Naqvi, S. A. A., Badruddin, N., Malik, A. S., Hazabbah, W., & Abdullah, B. (2013). Does 3D produce more symptoms of visually induced motion sickness?. In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 6405-6408. DOI: 10.1109/EMBC.2013.6611020
46 Oman, C. M. (1990). Motion sickness: a synthesis and evaluation of the sensory conflict theory. Canadian Journal of Physiology and Pharmacology, 68(2), 294-303. DOI: 10.1139/y90-044   DOI
47 Park, S., Won, M. J., Mun, S., Lee, E. C., & Whang, M. (2014). Does visual fatigue from 3D displays affect autonomic regulation and heart rhythm?. International Journal of Psychophysiology, 92(1), 42-48. DOI: 10.1016/j.ijpsycho.2014.02.003   DOI
48 Park, S., & Whang, M. (2018). Infrared camera-based noncontact measurement of brain activity from pupillary rhythms. Frontiers in Physiology, 9, 1400. DOI: 10.3389/fphys.2018.01400   DOI
49 Park, S., Won, M. J., Lee, E. C., Mun, S., Park, M. C., & Whang, M. (2015). Evaluation of 3D cognitive fatigue using heart–brain synchronization. International Journal of Psychophysiology, 97(2), 120-130. DOI: 10.1016/j.ijpsycho.2015.04.006   DOI
50 Park, S., Won, M. J., Lee, D. W., & Whang, M. (2018). Non-contact measurement of heart response reflected in human eye. International Journal of Psychophysiology, 123, 179-198. DOI: 10.1016/j.ijpsycho.2017.07.014   DOI
51 Siegle, G. J., Steinhauer, S. R., & Thase, M. E. (2004). Pupillary assessment and computational modeling of the Stroop task in depression. International Journal of Psychophysiology, 52(1), 63-76. DOI: 10.1016/j.ijpsycho.2003.12.010   DOI
52 Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human-computer Studies, 59(1-2), 185- 198. DOI: 10.1016/S1071-5819(03)00017-X   DOI
53 Raajan, N. R., Suganya, S., Priya, M. V., Ramanan, S. V., Janani, S., Nandini, N. S., Hemanand, R., & Gayathri, S. (2012). Augmented reality based virtual reality. Procedia Engineering, 38, 1559-1565. DOI: 10.1016/j.proeng.2012.06.191   DOI
54 Ryan, M. L. (1999). Immersion vs. interactivity: Virtual reality and literary theory. SubStance, 28(2), 110-137. DOI: 10.1353/sub.1999.0015   DOI
55 Tanaka, M., Ishii, A., & Watanabe, Y. (2014). Neural effects of mental fatigue caused by continuous attention load: a magnetoencephalography study. Brain Research, 1561, 60-66. DOI: 10.1016/j.brainres.2014.03.009   DOI