Browse > Article
http://dx.doi.org/10.14695/KJSOS.2017.20.4.135

Smartphone Use at Night Affects Melatonin Secretion, Body Temperature, and Heart Rate  

Na, Nooree (Samsung Electronics)
Choi, Hojun (Department of Bio and Brain Engineering, KAIST)
Jeong, Kyeong Ah (Department of Industrial Design, KAIST)
Choi, Kyungah (Department of Industrial Design, KAIST)
Choi, Kyungsun (Department of Bio and Brain Engineering, KAIST)
Choi, Chulhee (Department of Bio and Brain Engineering, KAIST)
Suk, Hyeon-Jeong (Department of Industrial Design, KAIST)
Publication Information
Science of Emotion and Sensibility / v.20, no.4, 2017 , pp. 135-142 More about this Journal
Abstract
In the present study, we investigated the physiological effects of smartphone use at night when the display luminance and white balance were differently manipulated. Two levels of luminance and two types of white balance were combined to form four types of displays. Subjects were instructed to use smartphones between 23:00 to 01:00 twice a week for two weeks, and for each trial, subjects were given one of the four display types. Melatonin concentration in the saliva, body temperature and heart rate were measured before and after each experiment. The experimental result showed that the low luminance display supported melatonin secretion and thermoregulation compared to the high luminance display. With regard to the white balance, higher melatonin level was observed when using the display that filtered blue light. The low luminance display together with yellowish tint best supported restful sleep at night in terms of every physiological response. This study collectively demonstrates that bright and blue light emitted from smartphone displays adversely affect melatonin secretion, body temperature, and heart rate, and therefore, suggests the use of a display with low luminance or a display that filters blue light for a restful sleep at night.
Keywords
Optimal Display; Smartphone; Display Luminance; White Balance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lack, L. C., Gradisar, M., Van Someren, E. J., Wright, H. R., & Lushington, K. (2008). The relationship between insomnia and body temperatures. Sleep Medicine Reviews, 12(4), 307-317. DOI: 10.1016/j.smrv.2008.02.003   DOI
2 Lambooij, M., Fortuin, M., Heynderickx, I., & IJsselsteijn, W. (2009). Visual discomfort and visual fatigue of stereoscopic displays: A review. Journal of Imaging Science and Technology, 53(3), 30201-1. DOI: 10.2352/J.lmagingSci.Technol.2009.53.3.030201   DOI
3 Lanaj, K., Johnson, R. E., & Barnes, C. M. (2014). Beginning the workday yet already depleted? Consequences of late-night smartphone use and sleep. Organizational Behavior and Human Decision Processes, 124(1), 11-23. DOI: 10.1016/j.obhdp.2014.01.001   DOI
4 Leichtfried, V., Mair-Raggautz, M., Schaeffer, V., Hammerer-Lercher, A., Mair, G., Bartenbach, C., Canazei, M., & Schobersberger, W. (2015). Intense illumination in the morning hours improved mood and alertness but not mental performance. Applied Ergonomics, 46, 54-59. DOI: 10.1016/j.apergo.2014.07.001   DOI
5 Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A., & Markey, S. P. (1980). Light suppresses melatonin secretion in humans. Science, 210(4475), 1267-1269. DOI: 10.1126/science.7434030   DOI
6 Li, T., An, C., Campbell, A. T., & Zhou, X. (2015). Hilight: Hiding bits in pixel translucency changes. ACM SIGMOBILE Mobile Computing and Communications Review, 18(3), 62-70. DOI: 10.1145/2721896.2721910   DOI
7 Lockley, S. W., Brainard, G. C., & Czeisler, C. A. (2003). High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. The Journal of Clinical Endocrinology & Metabolism, 88(9), 4502-4505. DOI: 10.1210/jc.2003-030570   DOI
8 Monk, T., Buysse, D., Reynolds Iii, C. H. A. R. L. E. S., Berga, S., Jarrett, D., Begley, A. M. Y., & Kupfer, D. (1997). Circadian rhythms in human performance and mood under constant conditions. Journal of Sleep Research, 6(1), 9-18. DOI: 10.1046/j.1365-2869.1997.00023.x   DOI
9 Na, N., & Suk, H. J. (2014). Adaptive luminance contrast for enhancing reading performance and visual comfort on smartphone displays. Optical Engineering, 53(11), 113102-113102. DOI: 10.1117/1.OE.53.11.113102   DOI
10 Na, N., & Suk, H. J. (2017). Optimal display color for nighttime smartphone users. Color Research & Application, 42(1), 60-67. DOI: 10.1002/col.22044   DOI
11 Na, N., Jang, J., & Suk, H. J. (2014). Dynamics of backlight luminance for using smartphone in dark environment. In Human Vision and Electronic Imaging (p. 90140I). DOI: 10.1117/12.2038842
12 Oh, J. H., Yoo, H., Park, H. K., & Do, Y. R. (2015). Analysis of circadian properties and healthy levels of blue light from smartphones at night. Scientific Reports, 5. DOI: 10.1038/srep11325
13 Ou, L. C., Sun, P. L., Huang, H. P., & Ronnier Luo, M. (2015). Visual comfort as a function of lightness difference between text and background: A cross-age study using an LCD and a tablet computer. Color Research & Application, 40(2), 125-134. DOI: 10.1002/col.21873   DOI
14 Sale, S., & Scott, M. (2014). Consumer smartphone usage 2014: OTT communication services. Analysis Mason.
15 Thapan, K., Arendt, J., & Skene, D. J. (2001). An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. The Journal of Physiology, 535(1), 261-267. DOI: 10.1111/j.1469-7793.2001.t01-1-00261.x   DOI
16 Benedetto, S., Carbone, A., Drai-Zerbib, V., Pedrotti, M., & Baccino, T. (2014). Effects of luminance and illuminance on visual fatigue and arousal during digital reading. Computers in Human Behavior, 41, 112-119. DOI: 10.1016/j.chb.2014.09.023   DOI
17 Van den Bulck, J. (2007). Adolescent use of mobile phones for calling and for sending text messages after lights out: results from a prospective cohort study with a one-year follow-up. Sleep, 30(9), 1220-1223. DOI: 10.1093/sleep/30.9.1220   DOI
18 Waldeck, M. R., & Lambert, M. I. (2003). Heart rate during sleep: implications for monitoring training status. Journal of Sports Science & Medicine, 2(4), 133.
19 Wood, B., Rea, M. S., Plitnick, B., & Figueiro, M. G. (2013). Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Applied Ergonomics, 44(2), 237-240. DOI: 10.1016/j.apergo.2012.07.008   DOI
20 Wright, H. R., & Lack, L. C. (2001). Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiology International, 18(5), 801-808. DOI: 10.1081/CBI-100107515   DOI
21 Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070-1073. DOI: 10.1126/science.1067262   DOI
22 Brainard, G. C., Hanifin, J. P., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., & Rollag, M. D. (2001). Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. Journal of Neuroscience, 21(16), 6405-6412.   DOI
23 Brainard, G. C., Hanifin, J. P., Rollag, M. D., Greeson, J., Byrne, B., Glickman, G., Gerner, E., & Sanford, B. (2001). Human melatonin regulation is not mediated by the three cone photopic visual system. The Journal of Clinical Endocrinology & Metabolism, 86(1), 433-436. DOI: 10.1210/jcem.86.1.7277   DOI
24 Cajochen, C., Munch, M., Kobialka, S., Krauchi, K., Steiner, R., Oelhafen, P., Orgul S., & Wirz-Justice, A. (2005). High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. The Journal of Clinical Endocrinology & Metabolism, 90(3), 1311-1316. DOI: 10.1210/jc.2004-0957   DOI
25 Chang, A. M., Aeschbach, D., Duffy, J. F., & Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences, 112(4), 1232-1237. DOI: 10.1073/pnas.1418490112   DOI
26 Dubocovich, M. L. (1983). Melatonin is a potent modulator of dopamine release in the retina. Nature, 306(5945), 782-784. DOI: 10.1038/306782a0   DOI
27 Chen, J., Cranton, W., & Fihn, M. (Eds.). (2012). Handbook of visual display technology (Vol. 131). Berlin: Springer. DOI: 10.1007/978-3-540-79567-4
28 Colquhoun, W. P. (Ed.). (1971). Biological Rhythms and Human Performance (Ed.), WP Colquhoun. Academic press.
29 Czeisler, C. A., Weitzman, E. D., Moore-Ede, M. C., Zimmerman, J. C., & Knauer, R. S. (1980). Human sleep- Its duration and organization depend on its circadian phase. Science, 210(4475), 1264-1267. DOI: 10.1126/science.7434029   DOI
30 Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-analysis: melatonin for the treatment of primary sleep disorders. PloS one, 8(5), e63773. DOI: 10.1371/journal.pone.0063773   DOI
31 Figueiro, M. G. (2013). An overview of the effects of light on human circadian rhythms: Implications for new light sources and lighting systems design. Journal of Light & Visual Environment, 37(2_3), 51-61. DOI: 10.2150/jlve.IEIJ130000503   DOI
32 Garfinkel, D., Laudon, M., Nof, D., & Zisapel, N. (1995). Improvement of sleep quality in elderly people by controlled-release melatonin. The Lancet, 346(8974), 541-544. DOI: 10.1016/S0140-6736(95)91382-3   DOI
33 Hatori, M., & Panda, S. (2010). The emerging roles of melanopsin in behavioral adaptation to light. Trends in Molecular Medicine, 16(10), 435-446. DOI: 10.1016/j.molmed.2010.07.005   DOI
34 Higuchi, S., Motohashi, Y., Liu, Y., Ahara, M., & Kaneko, Y. (2003). Effects of VDT tasks with a bright display at night on melatonin, core temperature, heart rate, and sleepiness. Journal of Applied Physiology, 94(5), 1773-1776. DOI: 10.1152/japplphysiol.00616.2002   DOI