Browse > Article
http://dx.doi.org/10.3347/kjp.2022.60.5.327

Spatiotemporal Clusters and Trends of Pneumocystis Pneumonia in Korea  

Kim, Hwa Sun (Department of Family Medicine, Veterans Health Service Medical Center)
Nam, Ho-Woo (Department of Parasitology, College of Medicine, The Catholic University of Korea)
Ahn, Hye-Jin (Department of Parasitology, College of Medicine, The Catholic University of Korea)
Lee, Sang Haak (Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Kim, Yeong Hoon (Department of Ophthalmology, College of Medicine, The Catholic University of Korea)
Publication Information
Parasites, Hosts and Diseases / v.60, no.5, 2022 , pp. 327-338 More about this Journal
Abstract
This study determined the recent status and trend of Pneumocystis jirovecii pneumonia (PcP) in the non-human immunodeficiency virus (HIV) (non-HIV-PcP) and HIV (HIV-PcP) infected populations using data from the Health Insurance Review & Assessment Service (HIRA) and the Korea Disease Control and Prevention Agency (KDCA). SaTScan and Join-point were used for statistical analyses. Non-HIV-PcP cases showed an upward trend during the study period from 2010 to 2021, with the largest number in 2021 (551 cases). The upward trend was similar until 2020 after adjusting for the population. Seoul had the highest number of cases (1,597) in the non-HIV-PcP group, which was the same after adjusting for the population (162 cases/1,000,000). It was followed by Jeju-do (89 cases/1,000,000). The most likely cluster (MLC) for the non-HIV-PCP group was Seoul (Relative Risk (RR)=4.59, Log Likelihood Ratio (LLR)=825.531), followed by Jeju-do (RR=1.59, LLR=5.431). An upward trend was observed among the non-HIV-PcP group in the Jeju-do/Jeollanam-do/Jeollabuk-do/Gyeongsangnam-do/Busan/Daejeon/Daegu/Ulsan joint cluster (29.02%, LLR=11.638, P<0.001) located in the southern part of Korea. Both women and men in the non-HIV groups showed an overall upward trend of PcP during the study period. Men in the 60-69 age group had the highest annual percentage change (APC 41.8) during 2014-2019. In contrast, the HIV groups showed a falling trend of PcP recently. Men in the 60-69 age group had the most decrease (APC -17.6) during 2018-2021. This study provides an analytic basis for health measures and a nationwide epidemiological surveillance system for the management of PcP.
Keywords
Pneumocystis jirovecii; pneumonia; HIV; Health Insurance Review & Assessment Service (HIRA); cluster; trend;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chabe M, Durand-Joly I, Dei-Cas E. Transmission of Pneumocystis infection in humans. Med Sci (Paris) 2012; 28: 599-604 (in French). https://doi.org/10.1051/medsci/2012286012   DOI
2 Gigliotti F, Harmsen AG, Wright TW. Characterization of transmission of Pneumocystis carinii f. sp. muris through immunocompetent BALB/c mice. Infect Immun 2003; 71: 3852-3856. https://doi.org/10.1128/IAI.71.7.3852-3856.2003   DOI
3 Dumoulin A, Mazars E, Seguy N, Gargallo-Viola D, Vargas S, Cailliez JC, Aliouat EM, Wakefield AE, Dei-Cas E. Transmission of Pneumocystis carinii disease from immunocompetent contacts of infected hosts to susceptible hosts. Eur J Clin Microbiol Infect Dis 2000; 19:671-678. https://doi.org/10.1007/s100960000354.   DOI
4 Sokulska M, Kicia M, Wesolowska M, Hendrich AB. Pneumocystis jirovecii--from a commensal to pathogen: clinical and diagnostic review. Parasitol Res 2015; 114: 3577-3585. https://doi.org/10. 1007/s00436-015-4678-6   DOI
5 Grimwade K, Swingler G. Cotrimoxazole prophylaxis for opportunistic infections in children with HIV infection. Cochrane Database Syst Rev 2003: CD003508. https://doi.org/10.1002/14651858.CD003508   DOI
6 Morris A, Lundgren JD, Masur H, Walzer PD, Hanson DL, Frederick T, Huang L, Beard CB, Kaplan JE. Current epidemiology of Pneumocystis pneumonia. Emerg Infect Dis 2004; 10: 1713-1720. https://doi.org/10.3201/eid1010.030985   DOI
7 Radhi S, Alexander T, Ukwu M, Saleh S, Morris A. Outcome of HIV-associated Pneumocystis pneumonia in hospitalized patients from 2000 through 2003. BMC Infect Dis 2008; 8: 118-127. https://doi.org/10.1186/1471-2334-8-118   DOI
8 Huang L, Hecht FM, Stansell JD, Montanti R, Hadley WK, Hopewell PC. Suspected Pneumocystis carinii pneumonia with a negative induced sputum examination. Is early bronchoscopy useful? Am J Respir Crit Care Med 1995; 151: 1866-1871. https://doi.org/10.1164/ajrccm.151.6.7767533   DOI
9 Sokulska M, Kicia M, Wesolowska M, Piesiak P, Kowal A, Lobo ML, Kopacz Z, Hendrich AB, Matos O. Genotyping of Pneumocystis jirovecii in colonized patients with various pulmonary diseases. Med Mycol 2018; 56: 809-815. https://doi.org/10.1093/mmy/myx121   DOI
10 Asai N, Motojima S, Ohkuni Y, Matsunuma R, Nakashita T, Kaneko N, Mikamo H. Pathophysiological mechanism of nonHIV Pneumocystis jirovecii pneumonia. Respir Investig 2022; 60: 522-530. https://doi.org/10.1016/j.resinv.2022.04.002   DOI
11 Xue T, Du WQ, Dai WJ, Li YS, Wang SF, Wang JL, Zhang XR. Genetic polymorphisms of Pneumocystis jirovecii in HIV-positive and HIV-negative patients in northern China. Pol J Microbiol 2022; 71: 27-34. https://doi.org/10.33073/pjm-2022-002   DOI
12 Stelling J, Yih WK, Galas M, Kulldorff M, Pichel M, Terragno R, Tuduri E, Espetxe S, Binsztein N, O'Brien TF, Platt R. Automated use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect 2010; 138: 873-883. https://doi.org/10.1017/s0950268809990884   DOI
13 Alanio A, Gits-Muselli M, Guigue N, Desnos-Ollivier M, Calderon EJ, Di Cave D, Dupont D, Hamprecht A, Hauser PM, HelwegLarsen J, Kicia M, Lagrou K, Lengerova M, Matos O, Melchers WJG, Morio F, Nevez G, Totet A, White LP, Bretagne S. Diversity of Pneumocystis jirovecii across Europe: a multicentre observational study. EBioMedicine 2017; 22: 155-163. https://doi.org/10.1016/j.ebiom.2017.06.027   DOI
14 Lee HY, Choi SH, Kim T, Chang J, Kim SH, Lee SO, Kim MN, Sung H. Epidemiologic trends and clinical features of Pneumocystis jirovecii Pneumonia in Non-HIV patients in a Tertiary-Care Hospital in Korea over a 15-year-period. Jpn J Infect Dis 2019; 72: 270-273. https://doi.org/10.7883/yoken.JJID.2018.400   DOI
15 Kulldorff M. A spatial scan statistic. Commun Stat-Theor M 1997; 26: 1481-1496. https://doi.org/10.1080/03610929708831995   DOI
16 Mathes RW, Lall R, Levin-Rector A, Sell J, Paladini M, Konty KJ, Olson D, Weiss D. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system. PLoS One 2017; 12: e0184419. https://doi.org/10.1371/journal.pone.0184419   DOI
17 Kaplan JE, Hanson D, Dworkin MS, Frederick T, Bertolli J, Lindegren ML, Holmberg S, Jones JL. Epidemiology of human immunodeficiency virus-associated opportunistic infections in the United States in the era of highly active antiretroviral therapy. Clin Infect Dis 2000; 30 (suppl): 5-14. https://doi.org/10.1086/313843   DOI
18 Fauk NK, Hawke K, Mwanri L, Ward PR. Stigma and discrimination towards people living with HIV in the context of families, communities, and healthcare settings: a qualitative study in Indonesia. Int J Environ Res Public Health 2021; 18: 5424-5440. https://doi.org/10.3390/ijerph18105424   DOI
19 Seo HJ, Kim SY, Lee YJ, Jang BH, Park JE, Sheen SS, Hahn SK. A newly developed tool for classifying study designs in systematic reviews of interventions and exposures showed substantial reliability and validity. J Clin Epidemiol 2016; 70: 200-205. https://doi.org/10.1016/j.jclinepi.2015.09.013   DOI
20 Mahajan AP, Sayles JN, Patel VA, Remien RH, Sawires SR, Ortiz DJ, Szekeres G, Coates TJ. Stigma in the HIV/AIDS epidemic: a review of the literature and recommendations for the way forward. AIDS 2008; 22 (suppl): 67-79. https://doi.org/10.1097/01.aids.0000327438.13291.62   DOI
21 Kim JM, Kim NJ, Choi JY, Chin BS. History of Acquired Immune Deficiency Syndrome in Korea. Infect Chemother 2020; 52:234-244. https://doi.org/10.3947/ic.2020.52.2.234.   DOI
22 Oh MD, Park SW, Kim HB, Kim US, Kim NJ, Choi HJ, Shin DH, Lee JS, Choe K. Spectrum of opportunistic infections and malignancies in patients with human immunodeficiency virus infection in South Korea. Clin Infect Dis 1999; 29:1524-1528. https://doi.org/10.1086/313516.   DOI
23 Kim JM, Cho GJ, Hong SK, Chang KH, Chung JS, Choi YH, Song YG, Huh A, Yeom JS, Lee KS, Choi JY. Epidemiology and clinical features of HIV infection/AIDS in Korea. Yonsei Med J 2003; 44: 363-370. https://doi.org/10.3349/ymj.2003.44.3.363   DOI
24 Wang W, Zhang T, Yin F, Xiao X, Chen S, Zhang X, Li X, Ma Y. Using the maximum clustering heterogeneous set-proportion to select the maximum window size for the spatial scan statistic. Sci Rep 2020; 10: 4900-4913. https://doi.org/10.1038/s41598-020-61829-y   DOI
25 Nam K, Park SH, Lee J, Jo S, Kim SO, Noh S, Park JC, Kim JY, Kim J, Ham NS, Oh EH, Song EM, Hwang SW, Yang DH, Ye BD, Byeon JS, Myung SJ, Yang SK. Incidence and risk factors of Pneumocystis jirovecii pneumonia in Korean patients with inflammatory bowel disease. J Gastroenterol Hepatol 2020; 35: 218-224. https://doi.org/10.1111/jgh.14832   DOI
26 Chen J, Roth RE, Naito AT, Lengerich EJ, Maceachren AM. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality. Int J Health Geogr 2008; 7: 57-74. https://doi.org/10.1186/1476-072X-7-57   DOI
27 Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. Stat Med 1995; 14: 799-810. https://doi.org/10.1002/sim.4780140809   DOI
28 Yoo H, Jung I. Optimizing the maximum reported cluster size for normal-based spatial scan statistics. CSAM 2018; 25: 373-383. https://doi.org/10.29220/CSAM.2018.25.4.373   DOI
29 Azage M, Kumie A, Worku A, Bagtzoglou AC. Childhood diarrhea exhibits spatiotemporal variation in northwest Ethiopia: a SaTScan spatial statistical analysis. PLoS One 2015; 10:e0144690. https://doi.org/10.1371/journal.pone.0144690   DOI
30 Clegg LX, Hankey BF, Tiwari R, Feuer EJ, Edwards BK. Estimating average annual per cent change in trend analysis. Stat Med 2009;28:3670-82. https://doi.org/10.1002/sim.3733   DOI
31 Miller RF, Evans HER, Copas AJ, Cassell JA. Climate and genotypes of Pneumocystis jirovecii. Clin Microbiol Infect 2007; 13: 445-448. https://doi.org/10.1111/j.1469-0691.2006.01641.x   DOI
32 Choi EY, Kim JO, Kim YS, Yoon HJ, Jun JB, Sung YK. A case of Pneumocystis Jirovecii pneumonia in a patient with rheumatoid arthritis. J Rheum Dis 2012; 19: 359-363 (in Korean). https://doi.org/10.4078/jrd.2012.19.6.359   DOI
33 Walzer PD. The ecology of pneumocystis: perspectives, personal recollections, and future research opportunities. J Eukaryot Microbiol 2013; 60: 634-645. https://doi.org/10.1111/jeu.12072   DOI
34 Lee G, Koo TY, Kim HW, Lee DR, Lee DW, Oh J, Kim BS, Kim MS, Yang J, Kotry Study Group. Comparison of early and late Pneumocystis jirovecii pneumonia in kidney transplant patients: the Korean Organ Transplantation Registry (KOTRY) Study. Sci Rep 2022; 12:10682-10692. https://doi.org/10.1038/s41598-022-14580-5   DOI
35 Kim YJ, Woo JH, Kim MJ, Park DW, Song JY, Kim SW, Choi JY, Kim JM, Han SH, Lee JS, Choi BY, Lee JS, Kim SS, Kee MK, Kang MW, Kim SI. Opportunistic diseases among HIV-infected patients: a multicenter-nationwide Korean HIV/AIDS cohort study, 2006 to 2013. Korean J Intern Med 2016; 31: 953-960. https://doi.org/10.3904/kjim.2014.322   DOI
36 Molnar A, Iancu M, Radu R, Borzan CM. A joinpoint regression analysis of syphilis and gonorrhea incidence in 15-19-year old adolescents between 2005 and 2017: a regional study. Int J Environ Res Public Health 2020; 17: 5385-5396. https://doi.org/10.3390/ijerph17155385   DOI
37 Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 2000; 19: 335-351. https://doi.org/10.1002/(sici)1097-0258 (20000215)19:3<335::aid-sim336>3.0.co;2-z   DOI
38 Dunbar A, Schauwvlieghe A, Algoe S, van Hellemond JJ, Reynders M, Vandecasteele S, Boelens J, Depuydt P, Rijnders B. Epidemiology of Pneumocystis jirovecii pneumonia and (non-)use of prophylaxis. Front Cell Infect Microbiol 2020; 10: 224-230. https://doi.org/10.3389/fcimb.2020.00224   DOI
39 Chan SCW, Chung HY, Lau CS, Li PH. Epidemiology, mortality and effectiveness of prophylaxis for Pneumocystis jiroveci pneumonia among rheumatic patients: a territory-wide study. Ann Clin Microbiol Antimicrob 2021; 20: 78-84. https://doi.org/10.1186/s12941-021-00483-2   DOI
40 Andreasen PB, Rezahosseini O, Moller DL, Wareham NE, Thomsen MT, Houmami R, Knudsen AD, Knudsen J, Kurtzhals JAL, Rostved AA, Pedersen CR, Rasmussen A, Nielsen SD. Pneumocystis jirovecii pneumonia in liver transplant recipients in an era of routine prophylaxis. Immun Inflamm Dis 2022; 10: 93-100. https://doi.org/10.1002/iid3.546   DOI
41 Pruett TL. Pneumocystis jirovecii: the changing landscape for prophylaxis. Transplantation 2021; 105: 2142-2143. https://doi.org/10.1097/TP.0000000000003577   DOI
42 National Institute of Organ, Tissue, Blood Management. Organ Transplantation and Human Tissue Donation Statistics Annual Report 2020. National Institute of Organ, Tissue, Blood Management. Seoul, Korea (in Korean). Available from: https://www.konos.go.kr/board/boardListPage.do?page=sub4_2_1&boardId=30
43 Oh SJ, Lee JK, Shin OS. Aging and the immune system: the impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw 2019; 19: e37. https://doi.org/10.4110/in.2019.19.e37   DOI
44 Lin X, Garg S, Mattson CL, Luo Q, Skarbinski J. Prescription of Pneumocystis Jiroveci pneumonia prophylaxis in HIV-infected patients. J Int Assoc Provid AIDS Care 2016; 15: 455-458. https://doi.org/10.1177/2325957416667486   DOI
45 Bajaj V, Gadi N, Spihlman AP, Wu SC, Choi CH, Moulton VR. Aging, immunity, and COVID-19: how age influences the host immune response to coronavirus infections? Front Physiol 2020; 11: 571416. https://doi.org/10.3389/fphys.2020.571416   DOI
46 Hong H, Wang Q, Li J, Liu H, Meng X, Zhang H. Aging, cancer and immunity. J Cancer 2019; 10: 3021-3027. https://doi.org/10.7150/jca.30723   DOI
47 Green H, Paul M, Vidal L, Leibovici L. Prophylaxis of Pneumocystis pneumonia in immunocompromised non-HIV-infected patients: systematic review and meta-analysis of randomized controlled trials. Mayo Clin Proc 2007; 82: 1052-1059. https://doi.org/10.4065/82.9.1052   DOI
48 Stern A, Green H, Paul M, Vidal L, Leibovici L. Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients. Cochrane Database Syst Rev 2014: CD005590. https://doi.org/10.1002/14651858.CD005590.pub3   DOI
49 Lee HY, Choi SH, Kim T, Chang J, Kim SH, Lee SO, Kim MN, Sung H. Epidemiologic trends and clinical features of Pneumocystis jirovecii pneumonia in non-HIV Patients in a Tertiary-Care Hospital in Korea over a 15-Year-Period. Jpn J Infect Dis 2019; 72: 270-273. https://doi.org/10.7883/yoken.JJID.2018.400   DOI
50 Choi Y, Choi BY, Kim SM, Kim SI, Kim J, Choi JY, Kim SW, Song JY, Kim YJ, Park DW, Kim HY, Choi HJ, Kee MK, Shin YH, Yoo M. Epidemiological characteristics of HIV infected Korean: Korea HIV/AIDS Cohort Study. Epidemiol Health 2019; 41:e2019037. https://doi.org/10.4178/epih.e2019037   DOI
51 Vera C, Rueda ZV. Transmission and colonization of Pneumocystis jirovecii. J Fungi (Basel) 2021; 7: 979-994. https://doi.org/10.3390/jof7110979   DOI
52 Affairs KIFHaS. Health and Medical Resources Survey [internet]; [cited 2022 May 25]. Available from: https://www.kihasa.re.kr/ (in Korean).