Browse > Article
http://dx.doi.org/10.3347/kjp.2022.60.5.309

Treatment with Extracellular Vesicles from Giardia lamblia Alleviates Dextran Sulfate Sodium-Induced Colitis in C57BL/6 Mice  

Kim, Hyun Jung (Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency)
Lee, Young-Ju (Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency)
Back, Seon-Ok (Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency)
Cho, Shin-Hyeong (Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency)
Lee, Hee-Il (Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency)
Lee, Myoung-Ro (Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency)
Publication Information
Parasites, Hosts and Diseases / v.60, no.5, 2022 , pp. 309-315 More about this Journal
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent illness of the gastrointestinal tract. Treatment of IBD traditionally involves the use of aminosalicylic acid and steroids, while these drugs has been associated with untoward effects and refractoriness. The absence of effective treatment regimen against IBD has led to the exploration of new targets. Parasites are promising as an alternative therapy for IBD. Recent studies have highlighted the use of parasite-derived substances, such as excretory secretory products, extracellular vesicles (EVs), and exosomes, for the treatment of IBD. In this report, we examined whether EVs secreted by Giardia lamblia could prevent colitis in a mouse model. G. lamblia EVs (GlEVs) were prepared from in vitro cultures of Giardia trophozoites. Clinical signs, microscopic colon tissue inflammation, and cytokine expression levels were detected to assess the effect of GlEV treatment on dextran sulfate sodium (DSS)-induced experimental murine colitis. The administration of GlEVs prior to DSS challenge reduced the expression levels of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma. Our results indicate that GlEV can exert preventive effects and possess therapeutic properties against DSS-induced colitis.
Keywords
Giardia lamblia; inflammatory bowel disease; extracellular vesicle; dextran sulfate sodium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ma'ayeh SY, Liu J, Peirasmaki D, Hornaeus K, Bergstrom Lind S, Grabherr M, Bergquist J, Svard SG. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: the impact on host cells. PLoS Negl Trop Dis 2017; 11: e0006120. https://doi.org/10.1371/journal.pntd.0006120   DOI
2 Friedrich M, Pohin M, Powrie F. Review cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 2019; 50: 992-1006. https://doi.org/10.1016/j.immuni.2019.03.017   DOI
3 Noti M, Corazza N, Mueller C, Berger B, Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med 2010; 207: 1057-1066. https://doi.org/10.1084/jem.20090849   DOI
4 Emery SJ, Mirzaei M, Vuong D, Pascovici D, Chick JM, Lacey E, Haynes PA. Induction of virulence factors in giardia duodenalis independent of host attachment. Sci Rep 2016; 6: 1-16. https://doi.org/10.1038/srep20765   DOI
5 Summan A, Nejsum P, Williams AR. Modulation of human dendritic cell activity by Giardia and helminth antigens. Parasite Immunol 2018; 40: e12525. https://doi.org/10.1111/pim.12525   DOI
6 Banik S, Viveros PR, Seeber F, Klotz C, Ignatius R, Aebischer T. Giardia duodenalis arginine deiminase modulates the phenotype and cytokine secretion of human dendritic cells by depletion of arginine and formation of ammonia. Infect Immun 2013; 81: 2309-2317. https://doi.org/10.1128/IAI.00004-13   DOI
7 Cotton JA, Bhargava A, Ferraz JG, Yates RM, Beck PL, Buret AG. Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis. Infect Immun 2014; 82: 2772-2787. https://doi.org/10.1128/IAI.01771-14   DOI
8 Kim JJ, Shajib MS, Manocha MM, Khan WI. Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp 2012; 1: 1-6. https://doi.org/10.3791/3678   DOI
9 Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol 2014; 20: 91-99. https://doi.org/10.3748/wjg.v20.i1.91   DOI
10 Ng WK, Wong SH, Ng SC. Changing epidemiological trends of inflammatory bowel disease in Asia. Intest Res 2016; 14:111-119. https://doi.org/10.5217/ir.2016.14.2.111   DOI
11 Liu Y, Ye Q, Liu YL, Kang J, Chen Y, Dong WG. Schistosoma japonicum attenuates dextran sodium sulfateinduced colitis in mice via reduction of endoplasmic reticulum stress. World J Gastroenterol 2017; 23: 5700-5712. https://doi.org/10.3748/wjg.v23.i31.5700   DOI
12 Riveau G, Deplanque D, Remoue F, Schacht A, Vodougnon H, Capron M, Thiry M, Martial J, Libersa C, Capron A. Safety and immunogenicity of rSh28GST antigen in humans: phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl Trop Dis 2012; 6: e1704. https://doi.org/10.1371/journal.pntd.0001704   DOI
13 Rawla P, Sunkara T, Raj JP. Role of biologics and biosimilars in inflammatory bowel disease: current trends and future perspectives. J Inflamm Res 2018; 11: 215-226. https://doi.org/10.2147/JIR.S165330   DOI
14 Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol 2018; 9: 2247. https://doi.org/10.3389/fmicb.2018.02247   DOI
15 Versini M, Jeandel PY, Bashi T, Bizzaro G, Blank M, Shoenfeld Y. Unraveling the hygiene hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Med 2015; 13: 81. https://doi.org/10.1186/s12916-015-0306-7   DOI
16 Summers RW, Elliot DE, Urban JF, Thompson R, Weinstock JV. Trichuris suis therapy in Crohn's disease. Gut 2005; 54: 87-90. https://doi.org/10.1136/gut.2004.041749   DOI
17 Roig J, Saiz ML, Galiano A, Trelis M, Cantalapiedra F, Monteagudo C, Giner E, Giner RM, Recio MC, Bernal D, Sanchez-Madrid F, Marcilla A. Extracellular vesicles from the helminth Fasciola hepatica prevent DSS-induced acute ulcerative colitis in a T-lymphocyte independent mode. Front Microbiol 2018; 9: 1036. https://doi.org/10.3389/fmicb.2018.01036   DOI
18 Driss V, El Nady M, Delbeke M, Rousseaux C, Dubuquoy C, Sarazin A, Gatault S, Dendooven A, Riveau G, Colombel JF, Desreumaux P, Dubuquoy L, Capron M. The schistosome glutathione S-transferase P28GST, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils. Mucosal Immunol 2016; 9: 322-335. https://doi.org/10.1038/mi.2015.62   DOI
19 Smallwood TB, Giacomin PR, Loukas A, Mulvenna JP, Clark RJ, Miles JJ. Helminth immunomodulation in autoimmune disease. Front Immunol 2017; 8: 453. https://doi.org/10.3389/fimmu.2017.00453   DOI
20 Hang L, Setiawan T, Blum AM, Urban J, Stoyanoff K, Arihiro S, Reinecker H, Weinstock JV. Heligmosomoides polygyrus infection can inhibit colitis through direct interaction with innate immunity. J Immunol 2010; 185: 3184-3189. https://doi.org/10.4049/jimmunol.1000941   DOI
21 Cotton JA, Motta JP, Schenck LP, Hirota SA, Beck PL, Buret AG. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue. PLoS One 2014; 9: 1-15. https://doi.org/10.1371/journal.pone.0109087   DOI
22 Stadelmann B, Merino MC, Persson L, Svard SG. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells. PLoS One 2012; 7: e45325. https://doi.org/10.1371/journal.pone.0045325   DOI
23 Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 2014; 104: 1-15. https://doi.org/10.1002/0471142735.im1525s104   DOI
24 Pithadia AB, Jain S. Treatment of inflammatory bowel disease (IBD). Pharmacol Reports 2011; 63: 629-642. https://doi.org/10.1016/s1734-1140(11)70575-8   DOI
25 Alex P, Zachos NC, Nguyen T, Gonzales L, Chen TE, Conklin L, Centola M, Li X. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 2009; 15: 341-352. https://doi.org/10.1002/ibd.20753   DOI
26 Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflammatory bowel disease. Intest Res 2018; 16: 26-42. https://doi.org/10.5217/ir.2018.16.1.26   DOI
27 Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol 2008; 14: 4280. https://doi.org/10.3748/wjg.14.4280   DOI
28 Levin AD, Wildenberg ME, van den Brink GR. Mechanism of action of anti-TNF therapy in inflammatory bowel disease. J Crohns Colitis 2016; 10: 989-997. https://doi.org/10.1093/eccojcc/jjw053   DOI
29 Zhao P, Cao L, Wang X, Dong J, Zhang N, Li X, Li J, Zhang X, Gong P. Extracellular vesicles secreted by Giardia duodenalis regulate host cell innate immunity via TLR2 and NLRP3 inflammasome signaling pathways. PLoS Negl Trop Dis 2021; 15: e0009304. https://doi.org/10.1371/journal.pntd.0009304   DOI
30 Kornbluth A, Sachar DB. Ulcerative colitis practice guidelines in adults: American college of gastroenterology, practice parameters committee. Am J Gastroenterol 2010; 105: 501-523. https://doi.org/10.1038/ajg.2009.727   DOI
31 Hemperly A, Sandborn WJ, Vande Casteele N. Clinical pharmacology in adult and pediatric inflammatory bowel disease. Inflamm Bowel Dis 2018; 24: 2527-2542. https://doi.org/10.1093/ibd/izy189   DOI