Browse > Article
http://dx.doi.org/10.3347/kjp.2022.60.4.273

Morphological Identification and Phylogenetic Analysis of Laelapin Mite Species (Acari: Mesostigmata: Laelapidae) from China  

Yang, Huijuan (Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University)
Yang, Zhihua (School of Public Health, Dali University)
Dong, Wenge (Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University)
Publication Information
Parasites, Hosts and Diseases / v.60, no.4, 2022 , pp. 273-279 More about this Journal
Abstract
Laelapinae mites are involved in transmission of microbial diseases between wildlife and humans, with an impact on public health. In this study, 5 mite members in the subfamily Laelapinae (laelapin mites; LM) were morphologically identified by light microscopy, and the phylogenetic relationship of LM was analyzed in combination with the sequence information of part of the LM cytochrome oxidase subunit I (cox1) gene. The morphological identification revealed that 5 mites belonged to the genera Laelaps and Haemolaelaps, respectively. Sequence analysis showed that the ratio of nonsynonymous mutation rate to synonymous mutation rate of LM was less than 1, indicating that the LM cox1 gene had undergone purifying selection. Phylogenetic analysis showed that the Laelapinae is a monophyletic group. The genera Haemolaelaps and Hyperlaelaps did not separated into distinct clades but clustered together with species of the genus Laelaps. Our morphological and molecular analyses to describe the phylogenetic relationships among different genera and species of Laelapinae provide a reference for the improvement and revision of the LM taxonomy system.
Keywords
Laelapinae; morphological identification; phylogenetic analysis; cox1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Korallo-Vinarskaya NP, Vinarski MV, Khokhlova IS, Shenbrot GI, Krasnov BR. Intraspecific variation of body size in a gamasid mite Laelaps clethrionomydis: environment, geography and host dependence. Parasitol Res 2015; 114: 3767-3774. https://doi.org/10.1007/s00436-015-4606-9   DOI
2 Krantz GW, Walter DE. A Manual of Acarology. 3rd ed. Texas Tech University Press. Lubbock, USA. 2009, pp 1-812.
3 Lin RQ, Qiu LL, Liu GH, Wu XY, Weng YB, Xie WQ, Hou J, Pan H, Yuan ZG, Zou FC, Hu M, Zhu XQ. Characterization of the complete mitochondrial genomes of five Eimeria species from domestic chickens. Gene 2011; 408: 28-33. https://doi.org/10.1016/j.gene.2011.03.004   DOI
4 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thiere T, Ashton B, Meintjes P, Durmmond A. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199   DOI
5 Ronquist F, Teslenko M, van der Mark PVD, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61: 539-542. https://doi.org/10.1093/sysbio/sys029   DOI
6 Krasnov BR, Vinarski MV, Korallo-Vinarskaya NP, Khokhlova IS. Ecological correlates of body size in gamasid mites parasitic on small mammals: abundance and niche breadth. Ecography 2013; 36: 1042-1050. https://doi.org/10.1111/j.1600-0587.2012.00140.x   DOI
7 du Toit N, van Vuuren BJ, Matthee S, Matthee CA. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy. Mol Phylogenet Evol 2012; 65: 75-86. https://doi.org/10.1016/j.ympev.2012.05.036   DOI
8 Shahdadi A, Schubart CD. Taxonomic review of Perisesarma (Decapoda: Brachyura: Sesarmidae) and closely related genera based on morphology and molecular phylogenetics: new classification, two new genera and the questionable phylogenetic value of the epibranchial tooth. Zool J Linn Soc 2018; 182: 517-548. https://doi.org/10.1093/zoolinnean/zlx032   DOI
9 Dong WG, Dong YL, Guo XG, Shao RF. Frequent tRNA gene translocation towards the boundaries with control regions contributes to the highly dynamic mitochondrial genome organization of the parasitic lice of mammals. BMC Genomics 2021; 22: 598-615. https://doi.org/10.1186/s12864-021-07859-w   DOI
10 Xia X. DAMBE 7: new and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol 2018; 25: 1550-1552. https://doi.org/10.1093/molbev/msy073   DOI
11 Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187   DOI
12 Engelbrecht A, Matthee S, du Toit N, Matthee CA. Limited dispersal in an ectoparasitic mite, Laelaps giganteus, contributes to significant phylogeographic congruence with the rodent host, Rhabdomys. Mol Ecol 2016; 25: 1006-1021. https://doi.org/10.1111/mec.13523   DOI
13 Rambaut A. FigTree v1.4.4. [Internet]. Available from: http://tree.bio.ed.ac.uk/software/figtree/
14 Zhou CJ, Feng MX, Tang YT, Yang CX, Meng XL, Nie GX. Species diversity of freshwater shrimp in Henan Province, China, based on morphological characters and COI mitochondrial gene. Ecol Evol 2021; 11: 10502-10514. https://doi.org/10.1002/ECE3.7855   DOI
15 Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 2002; 18: 486-487. https://doi.org/10.1016/S0168-9525(02)02722-1   DOI
16 Shen,Y, Guan L, Wang D, Gan X. DNA barcoding and evaluation of genetic diversity in cyprinidae fish in the midstream of the Yangtze River. Ecol Evol 2016; 6: 2702-2713. https://doi.org/10.1002/ece3.2060   DOI
17 Zachvatkin AA. Organization of the genus Laelaps (Acarina, Parasitiformes) and the question of its epidemiological significance. Parazitologicheskii Sbornik 1948; 10: 50-75 (in Russian).
18 Martins-Hatano F, Gettinger D, Bergallo HG. Ecology and host specificity of laelapine mites (Acari: Laelapidae) of small mammals in an Atlantic Forest area of Brazil. J Parasitol 2002; 88: 36-40. https://doi.org/10.2307/3285387   DOI
19 Wharton GW, Cross HF. Studies on the feeding habits of three species of laelaptid mites. J Parasitol 1957; 43: 45-50. https://doi.org/10.2307/3274753   DOI
20 Moro CV, Chauve C, Zenner L. Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite 2005; 12: 99-109. https://doi.org/10.1051/parasite/2005122099   DOI
21 Hajibabaei M, Singer GA, Hebert PD, Hickey DA. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 2007; 23: 167-172. https://doi.org/10.1016/j.tig.2007.02.001   DOI
22 Boore JL. Animal mitochondrial genomes. Nucleic Acids Res 1999; 27: 1767-1780. https://doi.org/10.1093/nar/27.8.1767   DOI
23 Radovsky FJ. The evolution of parasitism and the distribution of some dermanyssoid mites (Mesostigmata) on vertebrate hosts. In Houck MA ed, Mites: Ecological and Evolutionary Analyses of Life-History Patterns. Springer. New York, USA. 1994, pp 186-217.
24 Young MR, Moraza ML, Ueckermann E, Heylen D, Baardsen LF, Lima-Barbero JF, Gal S, Gavish-Regev E, Gottlieb Y, Roy L, Recht E, Adouzi ME, Palevsky E. Linking morphological and molecular taxonomy for the identification of poultry house, soil, and nest dwelling mites in the Western Palearctic. Scientific Reports 2019; 9: 5784-5791. https://doi.org/10.1038/s41598-019-41958-9   DOI
25 Teng GF, Wang DQ, Gu YM, Meng YC. Economic Insects Fauna of China. Fasc. 40 Acari: Demanyssoideae. Science Press. Beijing, China. 1993, pp 1-391 (in Chinese).
26 Lareschi M, Velazco PM. Laelapinae Mites (Acari: Parasitiformes: Laelapidae) Parasitic of Sigmodontine Rodents from Northern Peru, with the Description of a New Species from Akodon- aerosus (Rodentia: Cricetidae: Sigmodontinae). J Parasitol 2013; 99: 189-193. https://doi.org/10.1645/GE-3241.1   DOI