Browse > Article
http://dx.doi.org/10.3347/kjp.2022.60.3.201

A Fluorescent Recombinase Aided Amplification Assay for Detection of Babesia microti  

Lin, Hong (Jiangsu Province Blood Center)
Zhao, Song (Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases)
Ye, Yuying (Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases)
Shao, Lei (Jiangsu Province Blood Center)
Jiang, Nizhen (Jiangsu Province Blood Center)
Yang, Kun (Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases)
Publication Information
Parasites, Hosts and Diseases / v.60, no.3, 2022 , pp. 201-205 More about this Journal
Abstract
Babesia microti is one of the most common causative agents of babesiosis. A sensitive and rapid detection is necessary for screening potentially infected individuals. In this study, B. microti cytochrome c oxidase subunit I (cox1) was selected as the target gene, multiple primers were designed, and optimized by a recombinase-aided amplification (RAA) assay. The optimal primers and probe were labeled with fluorescein. The sensitivity of fluorescent RAA (fRAA) was evaluated using gradient diluents of the cox1 recombinant plasmid and genomic DNA extracted from whole blood of B. microti infected mice. The specificity of fRAA was assessed by other transfusion transmitted parasites. The analytical sensitivity of the fRAA assay was 10 copies of recombinant plasmid per reaction and 10 fg/µl B. microti genomic DNA. No cross-reaction with any other blood-transmitted parasites was observed. Our results demonstrated that the fRAA assay would be rapid, sensitive, and specific for the detection of B. microti.
Keywords
Babesia microti; recombinase-aided amplification; molecular detection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou X, Xia S, Huang JL, Tambo E, Zhuge HX, Zhou XN. Human babesiosis, an emerging tick-borne disease in the People's Republic of China. Parasit Vectors 2014; 7: 509. http://doi.org/10.1186/s13071-014-0509-3   DOI
2 Chen Z, Li H, Gao X, Bian A, Yan H, Kong D, Liu X. Human babesiosis in China: a systematic review. Parasitol Res 2019; 118: 1103-1112. http://doi.org/10.1007/s00436-019-06250-9   DOI
3 Zhou X, Li SG, Wang JZ, Huang JL, Zhou HJ, Chen JH, Zhou XN, Emergence of human babesiosis along the border of China with Myanmar: detection by PCR and confirmation by sequencing. Emerg Microbes Infect 2014; 3: e55. http://doi.org/10.1038/emi.2014.55   DOI
4 Chen Y, Yan D, Zhang YC. Transfusion-associated babesiosis in China: a case report. Transfus Apher Sci 2020; 59: 102902. http://doi.org/10.1016/j.transci.2020.102902   DOI
5 Levin AE, Williamson PC, Bloch EM, Clifford J, Cyrus S, Shaz BH, Kessler D, Gorlin J, Erwin JL, Krueger NX, Williams GV, Penezina O, Telford SR, Branda JA, Krause PJ, Wormser GP, Schotthoefer AM, Fritsche TR, Busch MP. Serologic screening of United States blood donors for Babesia microti using an investigational enzyme immunoassay. Transfusion 2016; 56: 1866-1874. https://doi.org/10.1111/trf.13618   DOI
6 Xu B, Liu XF, Cai YC, Huang JL, Zhang RX, Chen JH, Cheng XJ, Zhou X, Xu XN, Zhou Y, Zhang T, Chen SB, Li J, Wu QF, Sun CS, Fu YF, Chen JX, Zhou XN, Hu W. Screening for biomarkers reflecting the progression of Babesia microti infection. Parasit Vectors 2018; 11: 379. https://doi.org/10.1186/s13071-018-2951-0   DOI
7 Hikosaka K, Tsuji N, Watanabe Y, Kishine H, Horii T, Igarashi I, Kita K, Tanabe K. Novel type of linear mitochondrial genomes with dual flip-flop inversion system in apicomplexan parasites, Babesia microti and Babesia rodhaini. BMC Genomics 2012; 13: 622. http://doi.org/10.1186/1471-2164-13-622   DOI
8 Madison-Antenucci S, Kramer LD, Gebhardt LL, Kauffman E. Emerging tick-borne diseases. Clin Microbiol Rev 2020; 33: e00083-18. https://doi.org/10.1128/CMR.00083-18   DOI
9 Gumber S, Nascimento FS, Rogers KA, Bishop HS, Rivera HN, Xayavong MV, Devare SG, Schochetman G, Amancha PK, Qvarnstrom Y, Wilkins PP, Villinger F. Experimental transfusion-induced Babesia microti infection: dynamics of parasitemia and immune responses in a rhesus macaque model. Transfusion 2016; 56: 1508-1519. https://doi.org/10.1111/trf.13521   DOI
10 Vannier E, Krause PJ. Human babesiosis. N Engl J Med 2012; 366: 2397-2407. https://doi.org/10.1056/NEJMra1202018   DOI
11 Moritz ED, Winton CS, Tonnetti L, Townsend RL, Berardi VP, Hewins ME, Weeks KE, Dodd RY, Stramer SL. Screening for Babesia microti in the U.S. Blood Supply. N Engl J Med 2016; 375: 2236-2245. https://doi.org/10.1056/NEJMoa1600897   DOI
12 Nie Z, Zhao Y, Shu X, Li D, Ao Y, Li M, Wang S, Cui J, An X, Zhan X, He L, Liu Q, Zhao J. Recombinase polymerase amplification with lateral flow strip for detecting Babesia microti infections. Parasitol Int 2021; 83: 102351. http://doi.org/10.1016/j.parint.2021.102351   DOI
13 Persing DH, Mathiesen D, Marshall WF, Telford SR, Spielman A, Thomford JW, Conrad PA, Detection of Babesia microti by polymerase chain reaction. J Clin Microbiol 1992; 30: 2097-2103. https://doi.org/10.1128/jcm.30.8.2097-2103.1992   DOI
14 Lin H, Ji YH, Chen XL, Zhu SW, Sun J, Huang CY, Jiao YJ. Seroprevalence of Babesia infection among blood donors in Jiangsu province. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2019; 31: 516-518 (in Chinese). http://doi.org/10.16250/j.32.1374.2017209   DOI
15 Bloch EM, Yang Y, He M, Tonnetti L, Liu Y, Wang J, Guo Y, Li H, Leiby DA, Shan H. A pilot serosurvey of Babesia microti in Chinese blood donors. Vox Sang 2018; 113: 345-349. http://doi.org/10.1111/vox.12648   DOI
16 Krause PJ, Telford S, Spielman A, Ryan R, Magera J, Rajan TV, Christianson D, Alberghini TV, Bow L, Persing D. Comparison of PCR with blood smear and inoculation of small animals for diagnosis of Babesia microti parasitemia. J Clin Microbiol 1996; 34: 2791-2794. https://doi.org/10.1128/JCM.34.11.2791-2794.1996   DOI
17 Teal AE, Habura A, Ennis J, Keithly JS, Madison-Antenucci S. A new real-time PCR assay for improved detection of the parasite Babesia microti. J Clin Microbiol 2012; 50: 903-908. https://doi.org/10.1128/JCM.05848-11   DOI
18 Stanley J, Stramer SL, Erickson Y, Cruz J, Gorlin J, Janzen M, Rossmann SN, Straus T, Albrecht P, Pate LL, Galel SA. Detection of Babesia RNA and DNA in whole blood samples from US blood donations. Transfusion 2021; 6: 1317-1325. https://doi.org/10.1111/trf.16617   DOI
19 Wei CY, Wang XM, Wang ZS, Wang ZH, Guan ZZ, Zhang LH, Dou XF, Wang H. High prevalence of Babesia microti in small mammals in Beijing. Infect Dis Poverty 2020; 9: 155. http://doi.org/10.1186/s40249-020-00775-3   DOI
20 Goodell AJ, Bloch EM, Krause PJ, Custer B. Costs, consequences, and cost-effectiveness of strategies for Babesia microti donor screening of the US blood supply. Transfusion 2014 7; 54: 2245-2257. https://doi.org/10.1111/trf.12805   DOI
21 Gao ZH, Huang TH, Jiang BG, Jia N, Liu ZX, Shao ZT, Jiang RR, Liu HB, Wei R, Li YQ, Yao HW, von Fricken ME, Jiang JF, Du CH, Cao WC. Wide distribution and genetic diversity of Babesia microti in small mammals from Yunnan province, Southwestern China. PLoS Negl Trop Dis 2017; 11: e0005898. http://doi.org/10.1371/journal.pntd.0005898   DOI
22 Kamau E, Tolbert LS, Kortepeter L, Pratt M, Nyakoe N, Muringo L, Ogutu B, Waitumbi JN, Ockenhouse CF. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol 2011; 49: 2946-2953. https://doi.org/10.1128/JCM.00276-11   DOI
23 Wu F, Cai YC, Qin Z. Q AL, Lu Y, Chen SH, Wu XP, Chen J X. (2016) Development of loop-mediated isothermal amplification (LAMP) assay combined with FTA card for detecting Babesia microti. Chin J Zoonoses 2016; 32: 435-441 (in Chinese). https://doi.org/10.3969/j.issn.1002-2694.2016.05.004   DOI
24 Hikosaka K, Watanabe Y, Tsuji N, Kita K, Kishine H, Arisue N, Palacpac NM, Kawazu, S, Sawai H, Horii T, Igarashi I, Tanabe K. Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria. Mol Biol Evol 2010; 27: 1107-1116. http://doi.org/10.1093/molbev/msp320   DOI