Browse > Article
http://dx.doi.org/10.3347/kjp.2022.60.2.117

Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin  

Zhang, Kai (College of Animal Science & Technology, Shihezi University)
Liu, Yucheng (College of Animal Science & Technology, Shihezi University)
Zhang, Guowu (College of Animal Science & Technology, Shihezi University)
Wang, Xifeng (College of Animal Science & Technology, Shihezi University)
Li, Zhiyuan (College of Animal Science & Technology, Shihezi University)
Shang, Yunxia (College of Animal Science & Technology, Shihezi University)
Ning, Chengcheng (College of Animal Science & Technology, Shihezi University)
Ji, Chunhui (College of Animal Science & Technology, Shihezi University)
Cai, Xuepeng (State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
Xia, Xianzhu (College of Animal Science & Technology, Shihezi University)
Qiao, Jun (College of Animal Science & Technology, Shihezi University)
Meng, Qingling (College of Animal Science & Technology, Shihezi University)
Publication Information
Parasites, Hosts and Diseases / v.60, no.2, 2022 , pp. 117-126 More about this Journal
Abstract
Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-β and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.
Keywords
Fasciola hepatica; cystatin; mouse macrophage; immunomodulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mazeri S, Rydevik G, Handel I, Bronsvoort BMD, Sargison N. Estimation of the impact of Fasciola hepatica infection on time taken for UK beef cattle to reach slaughter weight. Sci Rep 2017; 7: 7319. https://doi.org/10.1038/s41598-017-07396-1   DOI
2 Beesley NJ, Caminade C, Charlier J, Flynn RJ, Hodgkinson JE, Martinez-Moreno A, Martinez-Valladares M, Perez J, Rinaldi L, Williams DJL. Fasciola and fasciolosis in ruminants in Europe: identifying research needs. Transbound Emerg Dis 2018; 65: 199-216. https://doi.org/10.1111/tbed.12682   DOI
3 Monica CB, Francisco A, Joachim R, Antonio S. Commentary: human liver flukes. Front Public Health 2018; 30; 6: 122. https://doi.org/10.3389/fpubh.2018.00122   DOI
4 Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Methods Enzymol 2003; 70: 179-199. https://doi.org/10.1042/bss0700179   DOI
5 Tian AL, Lu M, Calderon-Mantilla G, Petsalaki E, Dottorini T, Tian X, Wang Y, Huang SY, Hou JL, Li X, Elsheikha HM, Zhu XQ. A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells. Parasit Vectors 2018; 11: 152. https://doi.org/10.1186/s13071-018-2745-4   DOI
6 Liu Q, Huang SY, Yue DM, Wang JL, Wang Y, Li X, Zhu XQ. Proteomic analysis of Fasciola hepatica excretory and secretory products (FhESPs) involved in interacting with host PBMCs and cytokines by shotgun LC-MS/MS. Parasitol Res 2017; 116: 627-635. https://doi.org/10.1007/s00436-016-5327-4   DOI
7 Chen WJ, Frank ME, Jin W, Wahl SM. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 2001; 14: 715-725. https://doi.org/10.1016/s1074-7613(01)00147-9   DOI
8 Chen D, Tian AL, Hou JL, Li JX, Tian X, Yuan XD, Li X, Elsheikha HM, Zhu XQ. The multitasking Fasciola gigantica Cathepsin B interferes with various functions of goat peripheral blood mononuclear cells in vitro. Front Immunol 2019; 10: 1707. https://doi.org/10.3389/fimmu.2019.01707   DOI
9 Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature 1997; 390: 350-351. https://doi.org/10.1038/37022   DOI
10 Bzowska M, Guzik K, Barczyk K, Ernst M, Flad HD, Pryjma J. Increased IL-10 production during spontaneous apoptosis of monocytes. Eur J Immunol 2002; 32: 2011-2020. https://doi.org/10.1002/1521-4141(200207)32:7<2011::AID-IMMU2011>3.0.CO;2-L   DOI
11 Mas-Coma S, Bargues MD, Valero MA. Human fascioliasis infection sources, their diversity, incidence factors, analytical methods and prevention measures-CORRIGENDUM. Parasitology 2020; 147: 601. https://doi.org/10.1017/S0031182020000256   DOI
12 Robinson MW, Dalton JP, O'Brien BA, Donnelly S. Fasciola hepatica: the therapeutic potential of a worm secretome. Int J Parasitol 2013; 43: 283-291. https://doi.org/10.1016/j.ijpara.2012.11.004   DOI
13 Klotz C, Ziegler T, Danilowicz-Luebert E, Hartmann S. Cystatins of parasitic organisms. Adv Exp Med Biol 2011; 712: 208-221. https://doi.org/10.1007/978-1-4419-8414-2_13   DOI
14 Behrendt P, Arnold P, Brueck M, Rickert U, Lucius R, Hartmann S, Klotz C, Lucius R. A helminth protease inhibitor modulates the lipopolysaccharide-induced proinflammatory phenotype of microglia in vitro. Neuroimmunomodulation 2016; 23: 109-121. https://doi.org/10.1159/0004 44756   DOI
15 Rodriguez E, Carasi P, Frigerio S, Costa V, Vliet S, Noya V. Fasciola hepatica immune regulates CD11c+ cells by interacting with the macrophage Gal/GalNAc lectin. Front Immunol 2017; 8: 264. https://doi.org/10.3389/fimmu.2017.00264   DOI
16 Sander AF, Lavstsen T, Rask TS, Lisby M, Salanti A, Fordyce SL. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families. Nucleic Acids Res 2014; 42: 2270-2281. https://doi.org/10.1093/nar/gkt1174   DOI
17 Nakagawa TY, Rudensky AY. The role of lysosomal proteinases in MHC class II-mediated antigen processing and presentation. Immunity Rev 1999; 172: 121-129. https://doi.org/10.1111/j.1600-065x.1999.tb01361.x   DOI
18 SW, Cho MK, Park MK, Kang SA, Na BK, Ahn SC, Kim DH, Yu HS. Parasitic helminth cystatin inhibits DSS-induced intestinal inflammation via IL-10+F4/80+ macrophage recruitment. Korean J Parastiol 2011; 49: 245-254. https://doi.org/10.3347/kjp.2011.49.3.245   DOI
19 Cervi L, Rossi G, Cejas H, Masih DT. Fasciola hepatica-induced immune suppression of spleen mononuclear cell proliferation: role of nitric oxide. Clin Immunol Immunopathol 1998; 87: 145-154. https://doi.org/10.1006/clin.1997.4499   DOI
20 Kima PE. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int J Parasitol 2007; 37: 1087-1096. https://doi.org/10.1016/j.ijpara.2007.04.007   DOI
21 Cancela M, Corvo I, DA Silva E, Teichmann A, Roche L, Diaz A, Tort JF, Ferreira HB, Zaha A. Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica. Parasitology 2017; 144: 1695-1707. https://doi.org/10.1017/S0031182017001093   DOI
22 Chen L, He BH, Hou W, He L. Cysteine protease inhibitor of Schistosoma japonicum-a parasite-derived negative immunoregulatory factor. Parasitol Res 2017; 116: 901-908. https://doi.org/10.1007/s00436-016-5363-0   DOI
23 Yang X, Liu J, Yue Y, Chen W, Song M, Zhan X, Wu Z. Cloning, expression and characterisation of a type II cystatin from Schistosoma japonicum, which could regulate macrophage activation. Parasitol Res 2014; 113: 3985-3992. https://doi.org/10.1007/s00436-014-4064-9   DOI
24 Wang Y, Wu L, Liu X, Wang S, Ehsan M, Yan R, Song X, Xu L, Li X. Characterization of a secreted cystatin of the parasitic nematode Haemonchus contortus and its immune-modulatory effect on goat monocytes. Parasit Vectors 2017; 10: 425. https://doi.org/10.1186/s13071-017-2368-1   DOI
25 Escamilla A, Perez-Caballero R, Zafra R, Bautista MJ, Pacheco IL, Ruiz MT, Martinez-Cruz MS, Martinez-Moreno A, MolinaHernandez V, Perez J. Apoptosis of peritoneal leucocytes during early stages of Fasciola hepatica infections in sheep. Vet Parasitol 2017; 238: 49-53. https://doi.org/10.1016/j.vetpar.2017.03.015   DOI
26 Jefferies JR, Campbell AM, Rossum AJvan, Barrett J, Brophy PM. Proteomic analysis of Fasciola hepatica excretory-secretory products. Proteomics 2001; 1: 1128-1132. https://doi.org/10.1002/1615-9861(200109)1:9<1128::AID-PROT1128>3.0.CO;2-0   DOI
27 Maizels RM, Smits HH, McSorley HJ. Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. Immunity 2018; 49: 801-818. https://doi.org/10.1016/j.immuni.2018.10.016   DOI
28 Robinson MW, Donnelly S, Hutchinson AT, To J, Taylor NL, Norton RS, Perugini MA, Dalton JP. A family of helminth molecules that modulate innate cell responses via molecular mimicry of host antimicrobial peptides. PLoS Pathog 2011; 7: e1002042. https://doi.org/10.1371/journal.ppat.1002042   DOI
29 Sun YX, Liu GY, Li ZT, Chen Y, Liu YF, Liu BY, Su Z. Modulation of dendritic cell function and immune response by cysteine protease inhibitor from murine nematode parasite Heligmosomoides polygyrus. Immunology 2013; 138: 370-381. https://doi.org/10.1111/imm.12049   DOI
30 Varin A, Gordon S. Alternative activation of macrophages: immune function and cellular biology. Immunobiology 2009; 214: 630-641. https://doi.org/10.1016/j.immuni.2010.05.007   DOI
31 McManus DP, Dalton JP. Vaccines against the zoonotic trematodes Schistosoma japonicum, Fasciola hepatica, and Fasciola gigantica. Parasitology 2006; 133 (suppl): 43-61. https://doi.org/10.1017/s0031182006001806   DOI
32 Murray J, Manoury B, Balic A, Watts C, Maizels RM. Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol Biochem Parasitol 2005; 139: 197-203. https://doi.org/10.1016/j.molbiopara.2004.11.008   DOI
33 Boukli NM, Delgado B, Ricaurte M, Espino AM. Fasciola hepatica and Schistosoma mansoni: identification of common proteins by comparative proteomic analysis. J Parasitol 2011; 97: 852-861. https://doi.org/10.1645/GE-2495.1   DOI