Browse > Article
http://dx.doi.org/10.3347/kjp.2021.59.5.465

Attraction and Repellent Behaviors of Culicoides Biting Midges toward Cow Dung, Carbon Dioxide, and Essential Oils  

Yang, Daram (College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University)
Yang, Myeon-Sik (College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University)
Kim, Bumseok (College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University)
Publication Information
Parasites, Hosts and Diseases / v.59, no.5, 2021 , pp. 465-471 More about this Journal
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are hematophagous arthropod vectors that transmit epizootic arthropod-borne viruses (arboviruses). Arboviruses are recognized as causes of pregnancy loss, encephalomyelitis, and congenital malformations in ruminants. Therefore, continuous monitoring and control of Culicoides, which causes significant damage to industrial animals are necessary. We performed attraction and repellent tests in Culicoides using various essential oils, cow dung, and carbon dioxide (CO2). Culicoides tended to move more to cow dung (60.8%, P<0.0001) and CO2 (63.8%, P<0.01). To the essential oils as repellents, 26.1% (P<0.0001), 18.7% (P<0.001), and 25.5% (P<0.01) of the Culicoides moved to the lavender, lemongrass, and eucalyptus chamber, respectively. The Culicoides that moved to the 3 essential oils chambers showed markedly low activity. Collectively, it was showed that Culicoides tended to be attractive to cow dung and CO2, and repellent from the 3 essential oils.
Keywords
Culicoides; biting midge; essential oil; attraction; repellent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Parsonson I, Della-Porta A, Snowdon W. Congenital abnormalities in newborn lambs after infection of pregnant sheep with Akabane virus. Infect Immun 1977; 15: 254-262. https://doi.org/10.1128/iai.15.1.254-262.1977   DOI
2 Geier M, Bosch OJ, Boeckh J. Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti. Chem Senses 1999; 24: 647-653. https://doi.org/10.1093/chemse/24.6.647   DOI
3 Newhouse VF, Chamberlain R, Johnston JG, Sudia WD. Use of dry ice to increase mosquito catches of the CDC miniature light trap. Mosq News 1966; 26: 30-35 https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V26_N1_P030-035.pdf
4 Mellor PS, Boorman J, Baylis M. Culicoides biting midges: their role as arbovirus vectors. Annu Rev Entomol 2000; 45: 307-340. https://doi.org/10.1146/annurev.ento.45.1.307   DOI
5 Venegas P, Perez N, Zapata S, Mosquera JD, Augot D, Rojo-Alvarez JL, Benitez D. An approach to automatic classification of Culicoides species by learning the wing morphology. PLoS One 2020; 15: e0241798. https://doi.org/10.1371/journal.pone.0241798   DOI
6 Carpenter S, Wilson A, Mellor PS. Culicoides and the emergence of bluetongue virus in northern Europe. Trends Microbiol 2009; 17: 172-178. https://doi.org/10.1016/j.tim.2009.01.001   DOI
7 Elbers AR, Meiswinkel R, van Weezep E, van Oldruitenborgh-Oosterbaan MMS, Kooi EA. Schmallenberg virus in Culicoides spp. biting midges, the Netherlands, 2011. Emerg Infect Dis 2013; 19: 106. https://doi.org/10.3201/eid1901.121054   DOI
8 Jaenson TGT, Garboui S, PalssonK. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field. J Med Entomol 2006; 43: 731-736. https://doi.org/10.1093/jmedent/43.4.731   DOI
9 Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IR, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GR, Golding N, Hay SI. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 2015; 4: e08347 https://doi.org/10.7554/eLife.08347   DOI
10 Gillij Y, Gleiser R, Zygadlo J. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol 2008; 99: 2507-2515. https://doi.org/10.1016/j.biortech.2007.04.066   DOI
11 Kim B, Yang D, Sung JJ, Shim KS, inventors; Jeonbuk National University, Assignee. Apparatus for examining the preference or repulsion tendency of mosquito on test material. Korean patent 10-2141006. 2018 Dec 10. 1-10 (in Korean). https://doi.org/10.8080/1020180158153   DOI
12 Rutledge LC, Gupta RK, Wirtz RA, Buescher MD. Evaluation of the laboratory mouse model for screening topical mosquito repellents. J Am Mosq Control Assoc 1994; 10: 565-571. https://core.ac.uk/download/pdf/21597505.pdf
13 Semmler M, Abdel-Ghaffar F, Schmidt J, Mehlhorn H. Evaluation of biological and chemical insect repellents and their potential adverse effects. Parasitol Res 2014; 113: 185-188. https://doi.org/10.1007/s00436-013-3641-7   DOI
14 Traboulsi AF, Taoubi K, El-Haj S, Bessiere JM, Rammal S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 2002;58:491-495 https://doi.org/10.1002/ps.486   DOI
15 Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 2005; 96: 1749-1757. https://doi.org/10.1016/j.biortech.2005.01.007   DOI
16 Magnarelli L. Relative abundance and parity of mosquitoes collected in dry-ice baited and unbaited CDC miniature light traps. Mosq News 1975; 35: 350-353. https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V35_N3_P350-353.pdf
17 Logan JG, Stanczyk NM, Hassanali A, Kemei J, Santana AE, Ribeiro KA, Pickett JA, Mordue AJ. Arm-in-cage testing of natural human-derived mosquito repellents. Malar J 2010; 9: 239. https://doi.org/10.1186/1475-2875-9-239   DOI
18 Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O'leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JM, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007; 316: 1718-1723. https://doi.org/10.1126/science.1138878   DOI
19 Weeks JA, Guiney PD, Nikiforov AI. Assessment of the environmental fate and ecotoxicity of N, N-diethyl-m-toluamide (DEET). Integr Environ Assess Manag 2012; 8: 120-134. https://doi.org/10.1002/ieam.1246   DOI
20 Shirai Y, Kamimura K, Seki T, Morohashi M. L-lactic acid as a mosquito (Diptera: Culicidae) repellent on human and mouse skin. J Med Entomol 2001; 38: 51-54. https://doi.org/10.1603/0022-2585-38.1.51   DOI
21 Koren G, Matsui D, Bailey B. DEET-based insect repellents: safety implications for children and pregnant and lactating women. CMAJ 2003; 169: 209-212. https://www.cmaj.ca/content/cmaj/169/3/209.full.pdf
22 Chattopadhyay P, Dhiman S, Borah S, Rabha B, Chaurasia AK, Veer V. Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes. Acta Trop 2015; 147: 45-53. https://doi.org/10.1016/j.actatropica.2015.03.027   DOI
23 Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 2003; 89: 99-102. https://doi.org/10.1016/s0960-8524(03)00008-7   DOI
24 Coates CJ, Jasinskiene N, Miyashiro L, James AA. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 1998; 95: 3748-3751. https://doi.org/10.1073/pnas.95.7.3748   DOI
25 Majeed S, Hill SR, Ignell R. Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti. J Exp Biol 2014; 217: 598-604. https://doi.org/10.1242/jeb.092718   DOI
26 Yang D, Yang MS, Rhim H, Han JI, Oem JK, Kim YH, Lee KK, Lim CW, Kim B. Analysis of five arboviruses and Culicoides distribution on cattle farms in Jeollabuk-do, Korea. Korean J Parasitol 2018; 56: 477-485. https://doi.org/10.3347/kjp.2018.56.5.477   DOI
27 Cho HC, Chong CS. Notes on biting midges of the Genus Culicoides from South Korea-with special reference to unrecorded species and distribution. Korean J Parasitol 1974; 12: 45-75. http://doi.org/10.3347/kjp.1974.12.1.45   DOI