Browse > Article
http://dx.doi.org/10.3347/kjp.2021.59.2.167

Development of a Lateral Flow Strip-Based Recombinase Polymerase Amplification Assay for the Detection of Haemonchus contortus in Goat Feces  

Wu, Yao-Dong (Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University)
Wang, Qi-Qi (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
Wang, Meng (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
Elsheikha, Hany M. (Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham)
Yang, Xin (College of Veterinary Medicine, South China Agricultural University)
Hu, Min (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Zhu, Xing-Quan (State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
Xu, Min-Jun (Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University)
Publication Information
Parasites, Hosts and Diseases / v.59, no.2, 2021 , pp. 167-171 More about this Journal
Abstract
Haemonchosis remains a significant problem in small ruminants. In this study, the assay of recombinase polymerase amplification (RPA) combined with the lateral flow strip (LFS-RPA) was established for the rapid detection of Haemonchus contortus in goat feces. The assay used primers and a probe targeting a specific sequence in the ITS-2 gene. We compared the performance of the LFS-RPA assay to a PCR assay. The LFS-RPA had a detection limit of 10 fg DNA, which was 10 times less compared to the lowest detection limit obtained by PCR. Out of 24 goat fecal samples, LFS-RPA assay detected H. contortus DNA with 95.8% sensitivity, compared to PCR, 79.1% sensitivity. LFS-RPA assay did not detect DNA from other related helminth species and demonstrated an adequate tolerance to inhibitors present in the goat feces. Taken together, our results suggest that LFS-RPA assay had a high diagnostic accuracy for the rapid detection of H. contortus and merits further evaluation.
Keywords
Haemonchus contortus; goat; recombinase polymerase amplification; lateral flow strip; rapid detection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Melville L, Kenyon F, Javed S, McElarney I, Demeler J, Skuce P. Development of a loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Haemonchus contortus eggs in ovine faecal samples. Vet Parasitol 2014; 206: 308-312. https://doi.org/10.1016/j.vetpar.2014.10.022   DOI
2 Getachew T, Dorchies P, Jacquiet P. Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Review. Parasite 2007; 14: 3-14. https://doi.org/10.1051/parasite/2007141003   DOI
3 Fakae BB. Seasonal changes and hypobiosis in Haemonchus contortus infection in the West African Dwarf sheep and goats in the Nigerian derived savanna. Vet Parasitol 1990; 36: 123-130. https://doi.org/10.1016/0304-4017(90)90100-P   DOI
4 Bott NJ, Campbell BE, Beveridge I, Chilton NB, Rees D, Hunt PW, Gasser RB. A combined microscopic-molecular method for the diagnosis of strongylid infections in sheep. Int J Parasitol 2009; 39: 1277-1287. https://doi.org/10.1016/j.ijpara.2009.03.002   DOI
5 Kotze AC, Prichard RK. Chapter nine - anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Adv Parasitol 2016; 93: 397-428. https://doi.org/10.1016/bs.apar.2016.02.012   DOI
6 Katrin K, Jekaterina F, Oana T, Julia S, Taavi L, Hiljar S, Imre M, Made L, Indrek T, ulo L. Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagn 2014; 16: 127-135. https://doi.org/10.1016/j.jmoldx.2013.08.003   DOI
7 Wu YD, Zhou DH, Zhang LX, Zheng WB, Ma JG, Wang M, Zhu XQ, Xu MJ. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for equipment-free detection of Cryptosporidium spp. oocysts in dairy cattle feces. Parasitol Res 2016; 115: 3551-3555. https://doi.org/10.1007/s00436-016-5120-4   DOI
8 Besier RB, Kahn LP, Sargison ND, Van Wyk JA. Chapter Four - The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv Parasitol 2016; 93: 95-143. https://doi.org/10.1016/bs.apar.2016.02.022   DOI
9 Demeler J, Schein E, von Samson-Himmelstjerna G. Advances in laboratory diagnosis of parasitic infections of sheep. Vet Parasitol 2012; 189: 52-64. https://doi.org/10.1016/j.vetpar.2012.03.032   DOI
10 Yang X, Qi MW, Zhang ZZ, Gao C, Wang CQ, Lei WQ, Tan L, Zhao JL, Fang R, Hu M. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for the detection of Haemonchus contortus in goat fecal samples. J Parasitol 2017; 103: 161-167. https://doi.org/10.1645/16-157   DOI
11 Yang Y, Qin X, Zhang W, Li Z, Zhang S, Li Y, Zhang Z. Development of an isothermal recombinase polymerase amplification assay for rapid detection of pseudorabies virus. Mol Cell Probes 2017; 33: 32-35. https://doi.org/10.1016/j.mcp.2017.03.005   DOI
12 Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, Trau M, Botella JR. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol 2017; 15: e2003916. https://doi.org/10.1371/journal.pbio.2003916   DOI
13 Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PloS Biol 2006; 4: e204. https://doi.org/10.1371/journal.pbio.0040204   DOI
14 Crannell ZA, Castellanos-Gonzalez A, Irani A, Rohrman B, White AC, Richards-Kortum R. Nucleic acid test to diagnose cryptosporidiosis: lab assessment in animal and patient specimens. Anal Chem 2014; 86: 2565-2571. https://doi.org/10.1021/ac403750z   DOI
15 Teoh BT, Sam SS, Tan KK, Danlami MB, Shu MH, Johari J, Hooi PS, Brooks D, Piepenburg O, Nentwich O, Wilder-Smith A, Franco L, Tenorio A, AbuBakar S. Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification. J Clin Microbiol 2015; 53: 830-837. http://doi.org/10.1128/JCM.02648-14   DOI
16 Wu YD, Xu MJ, Wang QQ, Zhou CX, Wang M, Zhu XQ, Zhou DH. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment. Vet Parasitol 2017; 243: 199-203. https://doi.org/10.1016/j.vetpar.2017.06.026   DOI
17 Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 2014; 13: 99. https://doi.org/10.1186/1475-2875-13-99   DOI
18 Gao W, Huang H, Zhu P, Yan X, Fan J, Jiang J, Xu J. Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish. Bioprocess Biosyst Eng 2018; 41: 603-611. https://doi.org/10.1007/s00449-018-1895-2   DOI
19 Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 1997; 63: 3741-3751. https://doi.org/10.1128/AEM.63.10.3741-3751.1997   DOI
20 Radstrom P, Knutsson R, Wolffs P, Lovenklev M, Lofstrom C. Pre-PCR processing: Strategies to generate PCR-compatible samples. Mol Biotechnol 2004; 26: 133-146. https://doi.org/10.1385/MB:26:2:133   DOI
21 Rosser A, Rollinson D, Forrest M, Webster BL. Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit Vectors 2015; 8: 446. https://doi.org/10.1186/s13071-015-1055-3   DOI
22 Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 2014; 9: e112146. https://doi.org/10.1371/ journal.pone.0112146   DOI
23 Besier RB, Kahn LP, Sargison ND, Van Wyk JA. Diagnosis, treatment and management of Haemonchus contortus in small ruminants. Adv Parasitol 2016; 93: 181-238. https://doi.org/10.1016/bs.apar.2016.02.024   DOI