Browse > Article
http://dx.doi.org/10.1016/j.jgr.2016.12.005

Ginseng and obesity  

Li, Zhipeng (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
Publication Information
Journal of Ginseng Research / v.42, no.1, 2018 , pp. 1-8 More about this Journal
Abstract
Although ginseng has been shown to have an antiobesity effect, antiobesity-related mechanisms are complex and have not been completely elucidated. In the present study, we evaluated ginseng's effects on food intake, the digestion, and absorption systems, as well as liver, adipose tissue, and skeletal muscle in order to identify the mechanisms involved. A review of previous in vitro and in vivo studies revealed that ginseng and ginsenosides can increase energy expenditure by stimulating the adenosine monophosphate-activated kinase pathway and can reduce energy intake. Moreover, in high fat dietinduced obese and diabetic individuals, ginseng has shown a two-way adjustment effect on adipogenesis. Nevertheless, most of the previous studies into antiobesity effects of ginseng have been animal based, and there is a paucity of evidence supporting the suggestion that ginseng can exert an antiobesity effect in humans.
Keywords
AMPK; ginseng; ginsenoside; lipid metabolism; obesity;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M, Kimura Y, Feng Y. Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice. Phytomedicine 2008;15:1140-5.   DOI
2 Liu R, Zhang J, Liu W, Kimura Y, Zheng Y. Anti-obesity effects of protopanaxdiol types of ginsenosides isolated from the leaves of American ginseng (Panax quinquefolius L.) in mice fed with a high-fat diet. Fitoterapia 2010;81:1079-87.   DOI
3 Ko SK, Bae HM, Cho OS, Im BO, Chung SH, Lee BY. Analysis of ginsenoside composition of ginseng berry and seed. Food Sci Biotechnol 2008;17:1379-82.
4 Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J agric Food Chem 2007;55:2824-8.   DOI
5 Jung S, Lee MS, Shin Y, Kim CT, Kim IH, Kim YS, Kim Y. Anti-obesity and antiinflammatory effects of high hydrostatic pressure extracts of ginseng in high-fat diet induced obese rats. J Funct Foods 2014;10:169-77.   DOI
6 Chang TC, Huang SF, Yang TC, Chan FN, Lin HC, Chang WL. Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered $Na^{+}$/glucose cotransporter 1 expression. J Agric Food Chem 2007;55: 1993-8.   DOI
7 Wang CW, Su SC, Huang SF, Huang YC, Chan FN, Kuo YH, Hung MW, Lin HC, Chang WL, Chang TC. An essential role of cAMP response element binding protein in ginsenoside Rg1-mediated inhibition of $Na^{+}$/glucose cotransporter 1 gene expression. Mol Pharmacol 2015;88:1072-83.   DOI
8 Winder W, Hardie D. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 1999;277:E1-10.   DOI
9 Do Y, Kim JS, Yuan HD, Chung SH. Fermented ginseng attenuates hepatic lipid accumulation and hyperglycemia through AMPK activation. Food Sci Biotechnol 2009;18:172-8.
10 Lim G, Lee H, Kim EJ, Noh YH, Ro Y, Koo JH. Ginsenoside Rb2 upregulates the low density lipoprotein receptor gene expression through the activation of the sterol regulated element binding protein maturation in HepG2 cells. J Ginseng Res 2005;29:159-66.   DOI
11 Lee MS, Hwang JT, Sh Kim, Yoon S, Kim MS, Yang HJ, Kwon DY. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J Ethnopharmacol 2010;127:771-6.   DOI
12 Lee HM, Lee OH, Kim KJ, Lee BY. Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells. Phytother Res 2012;26:1017-22.   DOI
13 Lee HJ, Yh Lee, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka LongeEvans Tokushima fatty rats. Metabolism 2009;58:1170-7.   DOI
14 Cha JY, Park EY, Kim HJ, Park SU, Nam KY, Choi JE, Jun HS. Effect of white, taegeuk, and red ginseng root extracts on insulin-stimulated glucose uptake in muscle cells and proliferation of ${\beta}$-cells. J Ginseng Res 2010;34:192-7.   DOI
15 Hwang JT, Lee M, Kim M, Kwon DY. Biological active components found in Panax ginseng improve glucose uptake via AMPK signaling pathway. FASEB J 2008;22:683.
16 Yuan HD, Huang B, Quan HY, Chung SH. Ginsenoside 20 (R)-Rg3 stimulates glucose uptake in C2C12 myotubes via CaMKK-AMPK pathways. Food Sci Biotechnol 2010;19:1277-82.   DOI
17 Lee HM, Lee OH, Lee BY. Effect of ginsenoside Rg3 and Rh2 on glucose uptake in insulin-resistant muscle cells. J Korean Soc Appl Biological Chem 2010;53: 106-9.
18 Durante PE, Mustard KJ, Park SH, WinderWW,Hardie DG. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. Am J Physiol Endocrinol Metab 2002;283:E178-86.   DOI
19 Tabandeh MR, Jafari H, Hosseini SA, Hashemitabar M. Ginsenoside Rb1 stimulates adiponectin signaling in C2C12 muscle cells through upregulation of AdipoR1 and AdipoR2 proteins. Pharm Biol 2015;53:125-32.   DOI
20 Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, DeFuria J, Jick Z, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007;56:2910-8.   DOI
21 Jung HL, Kang HY. Effects of Korean red ginseng supplementation on muscle glucose uptake in high-fat fed rats. Chin J Nat Med 2013;11. 494-499:406-13.
22 Kim SH, Park KS. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 2003;48:511-3.   DOI
23 Reeds DN, Patterson BW, Okunade A, Holloszy JO, Polonsky KS, Klein S. Ginseng and ginsenoside Re do not improve ${\beta}$-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care 2011;34:1071-6.   DOI
24 Kwon DH, Bose S, Song MY, Lee MJ, Lim CY, Kwon BS, Kim HJ. Efficacy of Korean red ginseng by single nucleotide polymorphism in obese women: randomized, double-blind, placebo-controlled trial. J Ginseng Res 2012;36:1769.
25 Cho YH, Ahn SC, Lee SY, Jeong DW, Choi EJ, Kim YJ, Lee JG, Lee YH, Shin BC. Effect of Korean red ginseng on insulin sensitivity in non-diabetic healthy overweight and obese adults. Asia Pac J Clin Nutr 2013;22:365-71.
26 Kim SJ, Yuan HD, Chung SH. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol Pharm Bull 2010;33:325-8.   DOI
27 Park BJ, Lee YJ, Lee HR, Jung DH, Na HY, Kim HB, Shim JY. Effects of Korean red ginseng on cardiovascular risks in subjectswithmetabolic syndrome: a doubleblind randomized controlled study. Korean J Fam Med 2012;33:190-6.   DOI
28 Song MY, Kim BS, Kim H. Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women. J Ginseng Res 2014;38: 106-15.   DOI
29 Lee MS, Kim CT, Kim IH, Kim Y. Effects of Korean Red Ginseng extract on hepatic lipid accumulation in HepG2 cells. Biosci Biotechnol Biochem 2015;79:816-9.   DOI
30 Quan HY, Yuan HD, Jung MS, Ko SK, Park YG, Chung SH. Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int J Mol Med 2012;29:73.
31 Quan HY, Yuan HD, Zhang Y, Chung SH. Korean red ginseng attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. Food Sci Biotechnol 2010;19:207-12.   DOI
32 Lee HJ, Park SK, Han SJ, Kim SH, Hur KY, Kang ES, Ahn CW, Cha BS, Kim KS, Lee HC. Korean Red Ginseng activates AMPK in skeletal muscle and liver. Diabetes 2007;56:pA448.
33 Sekiya K, Okuda H, Hotta Y, Arichi S. Enhancement of adipose differentiation of mouse 3T3-L1 fibroblasts by ginsenosides. Phytother Res 1987;1:58-60.   DOI
34 Lee S, Lee MS, Kim CT, Kim IH, Kim Y. Ginsenoside Rg3 reduces lipid accumulation with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Int J Mol Sci 2012;13:5729-39.   DOI
35 Chang WL, Ho YH, Huang YC, Huang SF, Lin JY, Lin HC, Chang TC. The inhibitory effect of ginsenoside Rg1 on glucose and lipid production in human HepG2 cells. Adaptive Med 2013;5:181-8.   DOI
36 Lee MS, Shin Y, Kim Y. Effect of the high hydrostatic pressure extract of Korean ginseng on hepatic lipid metabolism and AMP-activated protein kinase activation in HepG2 cells (1045.25). FASEB J 2014;28. 1045.1025.
37 Masuno H, Kitao H, Okuda H. Ginsenosides increase secretion of lipoprotein lipase by 3T3-L1 adipocytes. Biosci Biotechnol Biochem 1996;60:1962-5.   DOI
38 Song YB, An YR, Kim SJ, Park HW, Jung JW, Kyung JS, Hwang SY, Kim YS. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high-fat diet. J Sci Food Agric 2012;92:388-96.   DOI
39 Kim MJ, Koo YD, Kim M, Lim S, Park YJ, Chung SS, Jang HC, Park KS. Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis in C2C12 myotubes. Diabetes Metab J 2016;40.
40 Yuan HD, Quan HY, Jung MS, Kim SJ, Huang B, Kim DY, Chung SH. Antidiabetic effect of pectinase-processed ginseng radix (GINST) in high fat dietfed ICR mice. J Ginseng Res 2011;35:308-14.   DOI
41 Kim CM, Yi SJ, Cho IJ, Ku SK. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients 2013;5:4316-32.   DOI
42 Qureshi A, Abuirmeileh N, Din Z, Ahmad Y, Burger W, Elson C. Suppression of cholesterogenesis and reduction of LDL cholesterol by dietary ginseng and its fractions in chicken liver. Atherosclerosis 1983;48:81-94.   DOI
43 Lee SH, Lee HJ, Yh Lee, Lee BW, Cha BS, Kang ES, Ahn CW, Park JS, Kim HJ, Lee EY. Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed SpragueeDawley rats. Phytother Res 2012;26:142-7.   DOI
44 Park MY, Lee KS, Sung MK. Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-${\alpha}$, PPAR-$\gamma$, and LPL mRNA expressions. Life Sci 2005;77:3344-54.   DOI
45 Xie J, Wang C, Ni M, Wu J, Mehendale S, Aung H, Foo A, Yuan C. American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice. J Food Sci 2007;72:S590-4.   DOI
46 Mollah ML, Kim GS, Moon HK, Chung SK, Cheon YP, Kim JK, Kim KS. Antiobesity effects of wild ginseng (Panax ginseng CA Meyer) mediated by $PPAR-{\gamma}$, GLUT4 and LPL in ob/ob mice. Phytother Res 2009;23:220-5.   DOI
47 Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J Pharmacol Sci 2005;97:124-31.   DOI
48 Yun SN, Moon SJ, Ko SK, Im BO, Chung SH. Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice. Arch Pharm Res 2004;27:790-6.   DOI
49 Gu W, Kim KA, Kim DH. Ginsenoside Rh1 ameliorates high fat diet-induced obesity in mice by inhibiting adipocyte differentiation. Biol Pharm Bull 2013;36:102-7.
50 Jung DH, Lee YJ, Kim CB, Kim JY, Shin SH, Park JK. Effects of ginseng on peripheral blood mitochondrial DNA copy number and hormones in men with metabolic syndrome: A randomized clinical and pilot study. Complement Ther Med 2016;24:40-6.   DOI
51 Yim JS, Kim YS, Moon SK, Cho KH, Bae HS, Kim JJ, Park EK, Kim DH. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol Pharm Bull 2004;27:1580-3.   DOI
52 Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014;59:713-23.   DOI
53 Zheng JS, Fu YQ, Chen Q, Huang T, Yang J, Li D. Consumption of Chinese teaflavor liquor improves circulating insulin levels without affecting hepatic lipid metabolism-related gene expression in SpragueeDawley rats. Sci World J 2013;2013.
54 Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y, Okumura T. Increased expression of $PPAR{\gamma}$ in high fat dietinduced liver steatosis in mice. Biochem Biophys Res Commun 2005;336: 215-22.   DOI
55 Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002;123:1705-25.   DOI
56 Jones ML, Tomaro-Duchesneau C, Prakash S. The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol 2014;22:306-8.   DOI
57 Kawase A, Yamada A, Gamou Y, Tahara C, Takeshita F, Murata K, Matsuda H, Samukawa K, Iwaki M. Increased effects of ginsenosides on the expression of cholesterol $7{\alpha}$-hydroxylase but not the bile salt export pump are involved in cholesterol metabolism. J Nat Med 2013;67:545-53.   DOI
58 Wood S. Diet drug orlistat linked to kidney, pancreas injuries. Medscape. Medscape News. Retrieved. 2011. p. 26.
59 Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, Zimmet P, Son H-Y. Epidemic obesity and type 2 diabetes in Asia. Lancet 2006;368:1681-8.   DOI
60 Bojanowska E, Ciosek J. Can we selectively reduce appetite for energy-dense foods? An overview of pharmacological strategies for modification of food preference behavior. Curr Neuropharmacol 2016;14:118-42.   DOI
61 Kim D. Intestinal microflora activate the pharmacological effects of herbal medicines. Nat Prod Sci 2002;8:35-43.
62 Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Disposition 2003;31:1065-71.   DOI
63 Thaler JP, Schwartz MW. Inflammation and obesity pathogenesis: the hypothalamus heats up. Endocr Rev 2010;151:4109-15.   DOI
64 Manousopoulou A, Koutmani Y, Karaliota S, Woelk C, Manolakos E, Karalis K, Garbis S. Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation. Nut Diab 2016;6:e204.   DOI
65 Wu Y, Yu Y, Szabo A, Han M, Huang XF. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PLoS One 2014;9:e92618.   DOI
66 Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008;198:561-9.   DOI
67 Shang W, Yang Y, Jiang B, Jin H, Zhou L, Liu S. Ginsenoside Rb 1 promotes adipogenesis in 3T3-L1 cells by enhancing $PPAR{\gamma}$ 2 and $C/EBP{\alpha}$ gene expression. Life Sci 2007;80:618-25.   DOI
68 Han KL, Jung MH, Sohn JH, Hwang JK. Ginsenoside 20 (S)-protopanaxatriol (PPT) activates peroxisome proliferator-activated receptor. GAMMA. (PPAR. GAMMA.) in 3T3-L1 Adipocytes. Biol Pharm Bull 2006;29:110-3.   DOI
69 Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2007;364:1002-8.   DOI
70 Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance ${\beta}$-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem 2008;72:2815-23.   DOI
71 Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY. Antiobesity effect of ginsenoside Rg3 involves the AMPK and $PPAR-{\gamma}$ signal pathways. Phytother Res 2009;23:262-6.   DOI
72 Kim EJ, Lee HI, Chung KJ, Noh YH, Ro YT, Koo JH. The ginsenoside-Rb2 lowers cholesterol and triacylglycerol levels in 3T3-L1 adipocytes cultured under high cholesterol or fatty acids conditions. BMB Rep 2009;42:194-9.   DOI
73 Huang YC, Lin CY, Huang SF, Lin HC, Chang WL, Chang TC. Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J Agric Food Chem 2010;58:6039-47.   DOI
74 Seo YS, Shon MY, Kong R, Kang OH, Zhou T, Kim DY, Park JD, Kwon DY. Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. J Ethnopharmacol 2016;190:231-40.   DOI
75 Lee YS, Cha BY, Yamaguchi K, Choi SS, Yonezawa T, Teruya T, Nagai K, Woo JT. Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice. Cytotechnology 2010;62:367-76.   DOI
76 Kim JH, Kang SA, Han SM, Shim I. Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother Res 2009;23:78-85.   DOI
77 Yun SN, Ko SK, Lee KH, Chung SH. Vinegar-processed ginseng radix improves metabolic syndrome induced by a high fat diet in ICR mice. Arch Pharm Res 2007;30:587-95.   DOI
78 Lee MR, Kim BC, Kim R, Oh HI, Kim HK, Choi KJ, Sung CK. Anti-obesity effects of black ginseng extract in high fat diet-fed mice. J Ginseng Res 2013;37: 308-14.   DOI
79 Zhang Y, Yu L, Cai W, Fan S, Feng L, Ji G, Huang C. Protopanaxatriol, a novel $PPAR{\gamma}$ antagonist from Panax ginseng, alleviates steatosis in mice. Sci Rep 2014;4.
80 Lee H, Park D, Yoon M. Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induced obese C57BL/6J mice. Food Chem Toxicol 2013;53:402-8.   DOI
81 Yuan HD, Kim JT, Chung SH. Pectinase-processed Ginseng radix (GINST) ameliorates hyperglycemia and hyperlipidemia in high fat diet-fed ICR mice. Biomol Ther 2012;20:220-5.   DOI
82 Lee H, Kim M, Shin SS, Yoon M. Ginseng treatment reverses obesity and related disorders by inhibiting angiogenesis in female db/db mice. J Ethnopharmacol 2014;155:1342-52.   DOI
83 Shen L, Xiong Y, Wang DQ, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMPactivated protein kinase in obese rats. J Lipid Res 2013;54:1430-8.   DOI
84 Yeo CR, Yang C, Wong TY, Popovich DG. A quantified ginseng (Panax ginseng CA Meyer) extract influences lipid acquisition and increases adiponectin expression in 3T3-L1 cells. Molecules 2011;16:477-92.   DOI
85 Niu CS, Yeh CH, Yeh MF, Cheng JT. Increase of adipogenesis by ginsenoside (Rh2) in 3T3-L1 cell via an activation of glucocorticoid receptor. Horm Metab Res 2009;41:271-6.   DOI
86 Kim SN, Lee JH, Shin H, Son SH, Kim YS. Effects of in vitro-digested ginsenosides on lipid accumulation in 3T3-L1 adipocytes. Planta Med 2009;75:596-601.   DOI
87 Kim SO. Ginseng saponin-Re and Coix lachrymajobi var. mayuen regulate obesity related genes expressions, TNF-alpha, leptin, lipoprotein lipase and resistin in 3T3-L1 adipocytes. J Life Sci 2007;17:1523-32.   DOI
88 Kim SO, Lee HE, Choe WK. The effects of ginseng saponin-Re, Rc and green tea catechine; ECGC (epigallocatechin gallate) on leptin, hormone sensitive lipase and resistin mRNA expressions in 3T3-L1 adipocytes. Korean J Nutr 2006;39:748-55.
89 Yeo CR, Lee SM, Popovich DG. Ginseng (Panax quinquefolius) reduces cell growth, lipid acquisition and increases adiponectin expression in 3T3-L1 cells. Evid Based Complement Alternat Med 2011;2011.
90 Lee OH, Lee HH, Kim JH, Lee BY. Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother Res 2011;25:768-73.   DOI
91 Park D, Yoon M, Compound K. a novel ginsenoside metabolite, inhibits adipocyte differentiation in 3T3-L1 cells: involvement of angiogenesis and MMPs. Biochem Biophys Res Commun 2012;422:263-7.   DOI
92 Oh J, Lee H, Park D, Ahn J, Shin SS, Yoon M. Ginseng and its active components ginsenosides inhibit adipogenesis in 3T3-L1 cells by regulating MMP-2 and MMP-9. Evid Based Complement Alternat Med 2012;2012:265023.
93 Muwalla MM, Abuirmeileh NM. Suppression of avian hepatic cholesterogenesis by dietary ginseng. J Nur Biochem 1990;1:518-21.   DOI
94 Kawase A, Yamada A, Gamou Y, Tahara C, Takeshita F, Murata K, Matsuda H, Samukawa K, Iwaki M. Effects of ginsenosides on the expression of cytochrome P450s and transporters involved in cholesterol metabolism. J Nat Med 2014;68:395-401.   DOI
95 Ikehara M, Shibata Y, Higashi T, Sanada S, Shoji J. Effect of ginseng saponins on cholesterol metabolism: III. Effect of ginsenoside-Rb1 on cholesterol synthesis in rats fed on high-fat diet. Chem Pharm Bull (Tokyo) 1978;26: 2844-9.   DOI
96 Lim G, Lee HI, Kim EJ, Ro YT, Noh YH, Koo JH. The mechanism of LDL receptor up-regulation by ginsenoside-Rb 2 in HepG2 cultured under enriched cholesterol condition. J Ginseng Res 2004;28:87-93.   DOI
97 Jones JR, Barrick C, Kim KA, Lindner J, Blondeau B, Fujimoto Y, Shiota M, Kesterson RA, Kahn BB, Magnuson MA. Deletion of $PPAR{\gamma}$ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci 2005;102:6207-12.   DOI
98 Valsamakis G, McTernan PG, Chetty R, Al Daghri N, Field A, Hanif W, Barnett A, Kumar S. Modest weight loss and reduction in waist circumference after medical treatment are associated with favorable changes in serum adipocytokines. Metabolism 2004;53:430-4.   DOI
99 Crandall DL, Goldstein BM, Huggins F, Cervoni P. Adipocyte blood flow: influence of age, anatomic location, and dietary manipulation. Am J Physiol Regul Integr Comp Physiol 1984;247:R46-51.   DOI
100 Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46:2347-55.   DOI