Browse > Article
http://dx.doi.org/10.5142/jgr.2013.37.94

Ginseng total saponin modulates podocyte p130Cas in diabetic condition  

Ha, Tae-Sun (Department of Pediatrics, College of Medicine, Chungbuk National University)
Lee, Jin-Seok (Department of Pediatrics, College of Medicine, Chungbuk National University)
Choi, Ji-Young (Department of Pediatrics, College of Medicine, Chungbuk National University)
Park, Hye-Young (Department of Pediatrics, College of Medicine, Chungbuk National University)
Publication Information
Journal of Ginseng Research / v.37, no.1, 2013 , pp. 94-99 More about this Journal
Abstract
Proteinuric conditions demonstrate structural and compositional changes of the foot processes and slit diaphragms between podocytes. p130Cas in podocytes serves as an adapter protein anchoring glomerular basement membrane to actin filaments of podocyte cytoskeleton. To investigate the effect of ginseng total saponin (GTS) on the pathologic changes of podocyte p130Cas induced by diabetic conditions, we cultured mouse podocytes under: 1) normal glucose (5 mM, control); 2) high glucose (HG, 30 mM); 3) advanced glycosylation endproducts (AGE)-added; or 4) HG plus AGE-added conditions and treated with GTS. In confocal imaging, p130Cas colocalized with zonula occludens-1 and synaptopodin connecting to F-actin. However, diabetic conditions relocalized p130Cas molecules at perinuclear cytoplasmic area and reduced the intensity of p130Cas. In Western blotting, diabetic conditions, especially HG plus AGE-added condition, decreased cellular p130Cas protein levels at 24 and 48 h. GTS improved such quantitative and qualitative changes. These findings imply that HG and AGE have an influence on the redistribution and amount of p130Cas of podocytes, which can be reversed by GTS.
Keywords
Panax ginseng; Ginseng total saponin; Podocytes; p130Cas; Advanced glycosylation end products;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ha TS, Song CJ, Lee JH. Effects of advanced glycosylation endproducts on perlecan core protein of glomerular epithelium. Pediatr Nephrol 2004;19:1219-1224.   DOI   ScienceOn
2 Di Stefano P, Cabodi S, Boeri Erba E, Margaria V, Bergatto E, Giuffrida MG, Silengo L, Tarone G, Turco E, Defilippi P. P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading. Mol Biol Cell 2004;15:787-800.
3 Bains R, Furness PN, Critchley DR. A quantitative immunofluorescence study of glomerular cell adhesion proteins in proteinuric states. J Pathol 1997;183:272-280.   DOI   ScienceOn
4 Takagi C, Ueki K, Ikeuchi H, Kuroiwa T, Kaneko Y, Tsukada Y, Maezawa A, Mitaka T, Sasaki T, Nojima Y. Increased expression of cell adhesion kinase beta in human and rat crescentic glomerulonephritis. Am J Kidney Dis 2002;39:174-182.   DOI   ScienceOn
5 Morino N, Matsumoto T, Ueki K, Mimura T, Hamasaki K, Kanda H, Naruse T, Yazaki Y, Nojima Y. Glomerular overexpression and increased tyrosine phosphorylation of focal adhesion kinase p125FAK in lupus-prone MRL/MP-lpr/lpr mice. Immunology 1999;97:634-640.   DOI
6 Ma H, Togawa A, Soda K, Zhang J, Lee S, Ma M, Yu Z, Ardito T, Czyzyk J, Diggs L et al. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J Am Soc Nephrol 2010;21:1145-1156.   DOI   ScienceOn
7 Ha TS, Choi JY, Park HY. Puromycin aminonucleoside modulates p130Cas of podocytes. Korean J Pediatr 2012;55:371-376.   과학기술학회마을   DOI   ScienceOn
8 Sotaniemi EA, Haapakoski E, Rautio A. Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 1995;18:1373-1375.   DOI   ScienceOn
9 Vogler BK, Pittler MH, Ernst E. The efficacy of ginseng. A systematic review of randomised clinical trials. Eur J Clin Pharmacol 1999;55:567-575.   DOI   ScienceOn
10 Chung SH, Choi CG, Park SH. Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice. Arch Pharm Res 2001;24:214-218.   DOI   ScienceOn
11 Yuan HD, Shin EJ, Chung SH. Anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. J Ginseng Res 2008;32:187-193.   DOI   ScienceOn
12 Kang KS, Kim HY, Yamabe N, Nagai R, Yokozawa T. Protective effect of sun ginseng against diabetic renal damage. Biol Pharm Bull 2006;29:1678-1684.   DOI   ScienceOn
13 Kim HY, Kang KS, Yamabe N, Nagai R, Yokozawa T. Protective effect of heat-processed American ginseng against diabetic renal damage in rats. J Agric Food Chem 2007;55:8491-8497.   DOI   ScienceOn
14 Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol 2008;591:266-272.   DOI   ScienceOn
15 Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Effects of heat-processed ginseng and its active component ginsenoside 20(S)-Rg3 on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats. Biol Pharm Bull 2010;33:1077-1081.   DOI   ScienceOn
16 Ha TS, Choi JY, Park HY, Lee JS. Ginseng total saponin improves podocyte hyperpermeability induced by high glucose and advanced glycosylation endproducts. J Korean Med Sci 2011;26:1316-1321.   DOI   ScienceOn
17 51. Parving HH, Mauer M, Fioretto P, Rossing P, Ritz E. Diabetic nephropathy. In: Brenner BM, ed. The kidney. Philadelphia: WB Saunders, 2011. p.1411-1454.
18 Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 2008;233:4-11.   DOI   ScienceOn
19 Vlassara H. Protein glycation in the kidney: role in diabetes and aging. Kidney Int 1996;49:1795-1804.   DOI   ScienceOn
20 Sharma K, Ziyadeh FN. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy. Semin Nephrol 1997;17:80-92.
21 Mundel P, Kriz W. Structure and function of podocytes: an update. Anat Embryol (Berl) 1995;192:385-397.
22 Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 2003;7:255-259.   DOI   ScienceOn
23 O’Neill GM, Fashena SJ, Golemis EA. Integrin signalling: a new Cas(t) of characters enters the stage. Trends Cell Biol 2000;10:111-119.   DOI   ScienceOn
24 Nojima Y, Morino N, Mimura T, Hamasaki K, Furuya H, Sakai R, Sato T, Tachibana K, Morimoto C, Yazaki Y et al. Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J Biol Chem 1995;270:15398-15402.   DOI   ScienceOn
25 Okuda M, Takahashi M, Suero J, Murry CE, Traub O, Kawakatsu H, Berk BC. Shear stress stimulation of p130(cas) tyrosine phosphorylation requires calcium-dependent c-Src activation. J Biol Chem 1999;274:26803-26809.   DOI
26 Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH: Ginseng in traditional herbal prescriptions. J Ginseng Res 2012; 36:225-241.   DOI   ScienceOn
27 Kim SK, Park JH: Trends in ginseng research in 2010. J Ginseng Res 2011; 35:389-398.   DOI   ScienceOn
28 Zhang LN, Xie XS, Zuo C, Fan JM. Effect of ginsenoside Rgl on the expression of TNF-alpha and MCP-1 in rats with diabetic nephropathy. Sichuan Da Xue Xue Bao Yi Xue Ban 2009;40:466-471.
29 Chen J, Gui D, Chen Y, Mou L, Liu Y, Huang J. Astragaloside IV improves high glucose-induced podocyte adhesion dysfunction via alpha3beta1 integrin upregulation and integrin-linked kinase inhibition. Biochem Pharmacol 2008;76:796-804.   DOI   ScienceOn
30 Yu L, Su Y, Paueksakon P, Cheng H, Chen X, Wang H, Harris RC, Zent R, Pozzi A. Integrin $\alpha1$/Akita double-knockout mice on a Balb/c background develop advanced features of human diabetic nephropathy. Kidney Int 2012;81:1086-1097.   DOI   ScienceOn
31 Mundel P, Reiser J, Zuniga Mejia Borja A, Pavenstadt H, Davidson GR, Kriz W, Zeller R. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 1997;236:248-258.   DOI   ScienceOn