Browse > Article
http://dx.doi.org/10.5624/isd.20210058

A 2-plane micro-computed tomographic alveolar bone measurement approach in mice  

Catunda, Raisa Queiroz (Department of Dentistry, Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta)
Ho, Karen Ka-Yan (Department of Dentistry, Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta)
Patel, Srushti (Department of Dentistry, Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta)
Febbraio, Maria (Department of Dentistry, Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta)
Publication Information
Imaging Science in Dentistry / v.51, no.4, 2021 , pp. 389-398 More about this Journal
Abstract
Purpose: This study introduces a standardized 2-plane approach using 8 landmarks to assess alveolar bone levels in mice using micro-computed tomography. Materials and Methods: Bone level differences were described as distance from the cemento-enamel junction (CEJ) to alveolar bone crest (ABC) and as percentages of vertical bone height and vertical bone loss, comparing mice infected with Porphyromonas gingivalis (Pg) to controls. Eight measurements were obtained per tooth: 2 in the sagittal plane (mesial and distal) and 6 in the coronal plane (mesiobuccal, middle-buccal, distobuccal, mesiolingual, middle-lingual, and distolingual). Results: Significant differences in the CEJ-to-ABC distance between Pg-infected mice and controls were found in the coronal plane (middle-lingual, mesiobuccal, and distolingual for the first molar; and mesiobuccal, middle-buccal, and distolingual for the second molar). In the sagittal plane, the distal measurement of the second molar was different. The middle-buccal, mesiobuccal, and distolingual sites of the first and second molars showed vertical bone loss relative to controls; the second molar middle-lingual site was also different. In the sagittal plane, the mesial sites of the first and second molars and the distal site of the second molar showed loss. Significantly different vertical bone height percentages were found for the mesial and distal sites of the second molar (sagittal plane) and the middle-lingual and distolingual sites of the first molar(coronal plane). Conclusion: A reliable, standardized technique for linear periodontal assessments in mice is described. Alveolar bone loss occurred mostly on the lingual surface of the coronal plane, which is often omitted in studies.
Keywords
X-Ray Microtomography; Alveolar Bone Loss; Periodontitis; Porphyromonas Gingivalis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lalla E, Lamster IB, Feit M, Huang L, Schmidt AM. A murine model of accelerated periodontal disease in diabetes. J Periodontal Res 1998; 33: 387-99.   DOI
2 Oz HS, Puleo DA. Animal models for periodontal disease. J Biomed Biotechnol 2011; 2011: 754857.   DOI
3 Wiebe CB, Adkins CA, Putnins EE, Hakkinen L, Larjava HS. Naturally occurring periodontal bone loss in the wild deer mouse, genus Peromyscus. J Periodontol 2001; 72: 620-5.   DOI
4 Fujita Y, Maki K. High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. BMC Obes 2016; 3: 1.   DOI
5 Glowacki AJ, Yoshizawa S, Jhunjhunwala S, Vieira AE, Garlet GP, Sfeir C, et al. Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc Natl Acad Sci U S A 2013; 110: 18525-30.   DOI
6 Struillou X, Boutigny H, Soueidan A, Layrolle P. Experimental animal models in periodontology: a review. Open Dent J 2010; 4: 37-47.   DOI
7 Lalla E, Lamster IB, Hofmann MA, Bucciarelli L, Jerud AP, Tucker S, et al. Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2003; 23: 1405-11.   DOI
8 Theil EM, Heaney TG. The validity of periodontal probing as a method of measuring loss of attachment. J Clin Periodontol 1991; 18: 648-53.   DOI
9 Al Shayeb KN, Turner W, Gillam DG. Periodontal probing: a review. Prim Dent J 2014; 3: 25-9.   DOI
10 Madden TE, Caton JG. Animal models for periodontal disease. Methods Enzymol 1994; 235: 106-19.   DOI
11 Ansai T, Awano S, Soh I. Problems and future approaches for assessment of periodontal disease. Front Public Health 2014; 2: 54.   DOI
12 Hong HH, Mei CC, Liu HL, Liang CH, Lin CK, Lee FY, et al. The correspondence of 3D supporting bone loss and crownto-root ratio to periodontitis classification. J Clin Periodontol 2020; 47: 825-33.   DOI
13 Yuan H, Zelkha S, Burkatovskaya M, Gupte R, Leeman SE, Amar S. Pivotal role of NOD2 in inflammatory processes affecting atherosclerosis and periodontal bone loss. Proc Natl Acad Sci U S A 2013; 110: E5059-68.
14 Lubcke PM, Ebbers MNB, Volzke J, Bull J, Kneitz S, Engelmann R, et al. Periodontal treatment prevents arthritis in mice and methotrexate ameliorates periodontal bone loss. Sci Rep 2019; 9: 8128.   DOI
15 Gully N, Bright R, Marino V, Marchant C, Cantley M, Haynes D, et al. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS One 2014; 9: e100838.   DOI
16 Papathanasiou E, Kantarci A, Konstantinidis A, Gao H, Van Dyke TE. SOCS-3 regulates alveolar bone loss in experimental periodontitis. J Dent Res 2016; 95: 1018-25.   DOI
17 Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol 2018; 89 Suppl 1: S173-82.   DOI
18 Gehlot P, Volk SL, Rios HF, Jepsen KJ, Holoshitz J. Spontaneous destructive periodontitis and skeletal bone damage in transgenic mice carrying a human shared epitope-coding HLA-DRB1 allele. RMD Open 2016; 2: e000349.   DOI
19 Marchesan J, Girnary MS, Jing L, Miao MZ, Zhang S, Sun L, et al. An experimental murine model to study periodontitis. Nat Protoc 2018; 13: 2247-67.   DOI
20 Settem RP, Honma K, Sharma A. Neutrophil mobilization by surface-glycan altered Th17-skewing bacteria mitigates periodontal pathogen persistence and associated alveolar bone loss. PLoS One 2014; 9: e108030.   DOI
21 Zhang L, Meng S, Tu Q, Yu L, Tang Y, Dard MM, et al. Adiponectin ameliorates experimental periodontitis in diet-induced obesity mice. PLoS One 2014; 9: e97824.   DOI
22 Fine DH, Patil AG, Loos BG. Classification and diagnosis of aggressive periodontitis. J Clin Periodontol 2018; 45 Suppl 20: S95-111.   DOI
23 Moore WE, Moore LV. The bacteria of periodontal diseases. Periodontol 2000 1994; 5: 66-77.   DOI
24 Ebbers M, Lubcke PM, Volzke J, Kriebel K, Hieke C, Engelmann R, et al. Interplay between P. gingivalis, F. nucleatum and A. actinomycetemcomitans in murine alveolar bone loss, arthritis onset and progression. Sci Rep 2018; 8: 15129.   DOI
25 Wilensky A, Gabet Y, Yumoto H, Houri-Haddad Y, Shapira L. Three-dimensional quantification of alveolar bone loss in Porphyromonas gingivalis-infected mice using micro-computed tomography. J Periodontol 2005; 76: 1282-6.   DOI
26 Hiyari S, Atti E, Camargo PM, Eskin E, Lusis AJ, Tetradis S, et al. Heritability of periodontal bone loss in mice. J Periodontal Res 2015; 50: 730-6.   DOI
27 Saadi-Thiers K, Huck O, Simonis P, Tilly P, Fabre JE, Tenenbaum H, et al. Periodontal and systemic responses in various mice models of experimental periodontitis: respective roles of inflammation duration and Porphyromonas gingivalis infection. J Periodontol 2013; 84: 396-406.   DOI
28 Myneni SR, Settem RP, Connell TD, Keegan AD, Gaffen SL, Sharma A. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss. J Immunol 2011; 187: 501-9.   DOI
29 Monasterio G, Castillo F, Ibarra JP, Guevara J, Rojas L, Alvarez C, et al. Alveolar bone resorption and Th1/Th17-associated immune response triggered during Aggregatibacter actinomycetemcomitans-induced experimental periodontitis are serotype-dependent. J Periodontol 2018; 89: 1249-61.   DOI
30 Hajishengallis G, Lamont RJ, Graves DT. The enduring importance of animal models in understanding periodontal disease. Virulence 2015; 6: 229-35.   DOI
31 Srinivasan M, Kodumudi KN, Galli DM. Aggregatibacter actinomycetemcomitans modulates toll-like receptors 2 and 4 in gingival epithelial cells in experimental periodontitis. J Int Clin Dent Res Organ 2010; 2: 24-9.   DOI
32 Li D, Feng Y, Tang H, Huang L, Tong Z, Hu C, et al. A simplified and effective method for generation of experimental murine periodontitis model. Front Bioeng Biotechnol 2020; 8: 444.   DOI
33 Rowsell HC. The Canadian Council on Animal Care - its guidelines and policy directives: the veterinarian's responsibility. Can J Vet Res 1991; 55: 205.
34 Park CH, Abramson ZR, Taba M Jr, Jin Q, Chang J, Kreider JM, et al. Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol 2007; 78: 273-81.   DOI