Browse > Article
http://dx.doi.org/10.5624/isd.20210120

Diagnostic accuracy of imaging examinations for peri-implant bone defects around titanium and zirconium dioxide implants: A systematic review and meta-analysis  

Chagas, Mariana Murai (Department of Stomatology, School of Dentistry, University of Sao Paulo)
Kobayashi-Velasco, Solange (Department of Stomatology, School of Dentistry, University of Sao Paulo)
Gimenez, Thais (Graduate Program in Dentistry, Ibirapuera University)
Cavalcanti, Marcelo Gusmao Paraiso (Department of Stomatology, School of Dentistry, University of Sao Paulo)
Publication Information
Imaging Science in Dentistry / v.51, no.4, 2021 , pp. 363-372 More about this Journal
Abstract
Purpose: This systematic review and meta-analysis assessed the diagnostic accuracy of imaging examinations for the detection of peri-implant bone defects and compared the diagnostic accuracy between titanium (Ti) and zirconium dioxide (ZrO2) implants. Materials and Methods: Six online databases were searched, and studies were selected based on eligibility criteria. The studies included in the systematic review underwent bias and applicability assessment using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and a random-effect meta-analysis. Summary receiver operating characteristic (sROC) curves were constructed to compare the effect of methodological differences in relation to the variables of each group. Results: The search strategy yielded 719 articles. Titles and abstracts were read and 61 studies were selected for full-text reading. Among them, 24 studies were included in this systematic review. Most included studies had a low risk of bias (QUADAS-2). Cone-beam computed tomography (CBCT) presented sufficient data for quantitative analysis in ZrO2 and Ti implants. The meta-analysis revealed high levels of inconsistency in the latter group. Regarding sROC curves, the area under the curve (AUC) was larger for the overall Ti group (AUC=0.79) than for the overall ZrO2 group (AUC=0.69), but without a statistically significant difference between them. In Ti implants, the AUCs for dehiscence defects(0.73) and fenestration defects(0.87) showed a statistically significant difference. Conclusion: The diagnostic accuracy of CBCT imaging in the assessment of peri-implant bone defects was similar between Ti and ZrO2 implants, and fenestration was more accurately diagnosed than dehiscence in Ti implants.
Keywords
Diagnostic Imaging; Cone-Beam Computed Tomography; Zirconium; Dental implants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sanz-Martin I, Sanz-Sanchez I, Carrillo de Albornoz A, Figuero E, Sanz M. Effects of modified abutment characteristics on peri-implant soft tissue health: a systematic review and meta-analysis. Clin Oral Implants Res 2018; 29: 118-29.
2 Bohner LO, Mukai E, Oderich E, Porporatti AL, Pacheco-Pereira C, Tortamano P, De Luca Canto G. Comparative analysis of imaging techniques for diagnostic accuracy of peri-implant bone defects: a meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124: 432-40.e5.   DOI
3 Sewerin IP. Comparison of radiographic image characteristics of Branemark and IMZ implants. Clin Oral Implants Res 1991; 2: 151-6.   DOI
4 Del Fabbro M, Testori T, Kekovic V, Goker F, Tumedei M, Wang HL. A systematic review of survival rates of osseointegrated implants in fully and partially edentulous patients following immediate loading. J Clin Med 2019; 8: 2142.   DOI
5 Koldsland OC, Scheie AA, Aass AM. Prevalence of peri-implantitis related to severity of the disease with different degrees of bone loss. J Periodontol 2010; 81: 231-8.   DOI
6 Hilgenfeld T, Juerchott A, Deisenhofer UK, Krisam J, Rammelsberg P, Heiland S, et al. Accuracy of cone-beam computed tomography, dental magnetic resonance imaging, and intraoral radiography for detecting peri-implant bone defects at single zirconia implants - an in vitro study. Clin Oral Implants Res 2018; 29: 922-30.   DOI
7 Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-60.   DOI
8 de-Azevedo-Vaz SL, Vasconcelos Kde F, Neves FS, Melo SL, Campos PS, Haiter-Neto F. Detection of periimplant fenestration and dehiscence with the use of two scan modes and the smallest voxel sizes of a cone-beam computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115: 121-7.   DOI
9 Kurt MH, Bagis N, Evli C, Atakan C, Orhan K. Comparison of the different voxel sizes in the estimation of peri-implant fenestration defects using cone beam computed tomography: an ex vivo study. Int J Implant Dent 2020; 6: 58.   DOI
10 Ludlow JB, Gates W, Nason R Jr. Radiographic evaluation of implant-obscured bone. Comparison of digitally subtracted tomographic and periapical techniques. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995; 80: 351-7.   DOI
11 Sharifabadi AD, McInnes MD, Bossuyt PM. PRISMA-DTA: an extension of PRISMA for reporting of diagnostic test accuracy systematic reviews. Clin Chem 2018; 64: 985-6.   DOI
12 Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol 2011; 40: 265-73.   DOI
13 Vasconcelos TV, Leandro Nascimento EH, Bechara BB, Freitas DQ, Noujeim M. Influence of cone beam computed tomography settings on implant artifact production: zirconia and titanium. Int J Oral Maxillofac Implants 2019; 34: 1114-20.   DOI
14 Sancho-Puchades M, Hammerle CH, Benic GI. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography. Clin Oral Implants Res 2015; 26: 1222-8.   DOI
15 Bender P, Salvi G, Buser D, Sculean A, Bornstein M. Correlation of three-dimensional radiologic data with subsequent treatment approach in patients with peri-implantitis: a retrospective analysis. Int J Periodontics Restorative Dent 2017; 37: 481-9.   DOI
16 Kamburoglu K, Kolsuz E, Murat S, Eren H, Yuksel S, Paksoy CS. Assessment of buccal marginal alveolar peri-implant and periodontal defects using a cone beam CT system with and without the application of metal artefact reduction mode. Dentomaxillofac Radiol 2013; 42: 20130176.   DOI
17 Monje A, Pons R, Insua A, Nart J, Wang HL, Schwarz F. Morphology and severity of peri-implantitis bone defects. Clin Implant Dent Relat Res 2019; 21: 635-43.
18 Bayrak S, Orhan K, Kursun Cakmak ES, Gorurgoz C, Odabasi O, Yilmaz D, et al. Evaluation of a metal artifact reduction algorithm and an optimization filter in the estimation of peri-implant dehiscence defects by using cone beam computed tomography: an in-vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130: 209-16.   DOI
19 de-Azevedo-Vaz SL, Alencar PN, Rovaris K, Campos PS, Haiter-Neto F. Enhancement cone beam computed tomography filters improve in vitro periimplant dehiscence detection. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116: 633-9.   DOI
20 Schwindling FS, Hilgenfeld T, Weber D, Kosinski MA, Rammelsberg P, Tasaka A. In vitro diagnostic accuracy of low-dose CBCT for evaluation of peri-implant bone lesions. Clin Oral Implants Res 2019; 30: 1200-8.   DOI
21 Kuhl S, Zurcher S, Zitzmann NU, Filippi A, Payer M, DagassanBerndt D. Detection of peri-implant bone defects with different radiographic techniques - a human cadaver study. Clin Oral Implants Res 2016; 27: 529-34.
22 Pinheiro LR, Gaia BF, Oliveira de Sales MA, Umetsubo OS, Santos Junior O, Cavalcanti MG. Effect of field of view in the detection of chemically created peri-implant bone defects in bovine ribs using cone beam computed tomography: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120: 69-77.   DOI
23 Schriber M, Yeung AW, Suter VG, Buser D, Leung YY, Bornstein MM. Cone beam computed tomography artefacts around dental implants with different materials influencing the detection of peri-implant bone defects. Clin Oral Implants Res 2020; 31: 595-606.   DOI
24 Dave M, Davies J, Wilson R, Palmer R. A comparison of cone beam computed tomography and conventional periapical radiography at detecting peri-implant bone defects. Clin Oral Implants Res 2013; 24: 671-8.   DOI
25 Vidor MM, Liedke GS, Fontana MP, da Silveira HL, Arus NA, Lemos A, et al. Is cone beam computed tomography accurate for postoperative evaluation of implants? An in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124: 500-5.   DOI
26 Sewerin IP, Gotfredsen K, Stoltze K. Accuracy of radiographic diagnosis of peri-implant radiolucencies - an in vitro experiment. Clin Oral Implants Res 1997; 8: 299-304.   DOI
27 Kamburoglu K, Murat S, Kilic C, Yuksel S, Avsever H, Farman A, et al. Accuracy of CBCT images in the assessment of buccal marginal alveolar peri-implant defects: effect of field of view. Dentomaxillofac Radiol 2014; 43: 20130332.   DOI
28 Kavadella A, Karayiannis A, Nicopoulou-Karayianni K. Detectability of experimental peri-implant cancellous bone lesions using conventional and direct digital radiography. Aust Dent J. 2006; 51: 180-6.   DOI
29 Naje AR, Drobie BF, Falah A. A comparison of cone beam computed tomography and panoramic radiography in the detection of mechanical created peri-implant bone defects. J Res Med Dent Sci 2019; 7: 222-5.
30 Vadiati Saberi B, Khosravifard N, Ghandari F, Hadinezhad A. Detection of peri-implant bone defects using cone-beam computed tomography and digital periapical radiography with parallel and oblique projection. Imaging Sci Dent 2019; 49: 265-72.   DOI
31 Garcia-Garcia M, Mir-Mari J, Benic GI, Figueiredo R, Valmaseda-Castellon E. Accuracy of periapical radiography in assessing bone level in implants affected by peri-implantitis: a crosssectional study. J Clin Periodontol 2016; 43: 85-91.   DOI
32 Pinheiro LR, Scarfe WC, Augusto de Oliveira Sales M, Gaia BF, Cortes AR, Cavalcanti MG. Effect of cone-beam computed tomography field of view and acquisition frame on the detection of chemically simulated peri-implant bone loss in vitro. J Periodontol 2015; 86: 1159-65.   DOI
33 Steiger-Ronay V, Krcmaric Z, Schmidlin PR, Sahrmann P, Wiedemeier DB, Benic GI. Assessment of peri-implant defects at titanium and zirconium dioxide implants by means of periapical radiographs and cone beam computed tomography: an in-vitro examination. Clin Oral Implants Res 2018; 29: 1195-201.   DOI
34 Klinke T, Daboul A, Maron J, Gredes T, Puls R, Jaghsi A, et al. Artifacts in magnetic resonance imaging and computed tomography caused by dental materials. Plos One 2012; 7: e31766.   DOI
35 Pieralli S, Kohal RJ, Lopez Hernandez E, Doerken S, Spies BC. Osseointegration of zirconia dental implants in animal investigations: a systematic review and meta-analysis. Dent Mater 2018; 34: 171-82.   DOI
36 Sirin Y, Horasan S, Yaman D, Basegmez C, Tanyel C, Aral A, et al. Detection of crestal radiolucencies around dental implants: an in vitro experimental study. J Oral Maxillofac Surg 2012; 70: 1540-50.   DOI
37 Vidor MM, Liedke GS, Vizzotto MB, da Silveira HL, da Silveira PF, Araujo CW, et al. Imaging evaluating of the implant/bone interface - an in vitro radiographic study. Dentomaxillofac Radiol 2017; 46: 20160296.   DOI
38 de-Azevedo-Vaz SL, Peyneau PD, Ramirez-Sotelo LR, Vasconcelos Kde F, Campos PS, Haiter-Neto F. Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 550-6.   DOI
39 Demirturk Kocasarac H, Ustaoglu G, Bayrak S, Katkar R, Geha H, Deahl ST 2nd, et al. Evaluation of artifacts generated by titanium, zirconium, and titanium-zirconium alloy dental implants on MRI, CT, and CBCT images: a phantom study. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127: 535-44.   DOI
40 Smeets R, Schollchen M, Gauer T, Aarabi G, Assaf AT, Rendenbach C, et al. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study. Dentomaxillofac Radiol 2017; 46: 20160267.   DOI
41 Pelekos G, Tse JM, Ho D, Tonetti MS. Defect morphology, bone thickness, exposure settings and examiner experience affect the diagnostic accuracy of standardized digital periapical radiographic images but not of cone beam computed tomography in the detection of peri-implant osseous defects: an in vitro study. J Clin Periodontol 2019; 46: 1294-302.   DOI
42 Pelekos G, Acharya A, Tonetti MS, Bornstein MM. Diagnostic performance of cone beam computed tomography in assessing peri-implant bone loss: a systematic review. Clin Oral Implants Res 2018; 29: 443-64.
43 Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res 2008; 19: 119-30.   DOI
44 Schwarz F, Derks J, Monje A, Wang HL. Peri-implantitis. J Clin Periodontol 2018; 45 Suppl 20: S246-66.   DOI
45 Mombelli A, Muller N, Cionca N. The epidemiology of periimplantitis. Clin Oral Implants Res 2012; 23 Suppl 20: 67-76.   DOI
46 Rios HF, Borgnakke WS, Benavides E. The use of cone-beam computed tomography in management of patients requiring den-tal implants: an American Academy of Periodontology best evidence review. J Periodontol 2017; 88: 946-59.   DOI
47 Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM, Cochrane Diagnostic Test Accuracy Working Group. Systematic reviews of diagnostic test accuracy. Ann Intern Med 2008; 149: 889-97.   DOI
48 Yeung AW, Azevedo B, Scarfe WC, Bornstein MM. Patient motion image artifacts can be minimized and re-exposure avoided by selective removal of a sequence of basis images from cone beam computed tomography data sets: a case series. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129: e212-23.   DOI
49 Academy report. Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. J Periodontol 2013; 84: 436-43.   DOI
50 Tyndall DA, Price JB, Tetradis S, Ganz SD, Hildebolt C, Scarfe WC, et al. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113: 817-26.   DOI
51 Kim JH, Abdala-Junior R, Munhoz L, Cortes AR, Watanabe PC, Costa C, et al. Comparison between different cone-beam computed tomography devices in the detection of mechanically simulated peri-implant bone defects. Imaging Sci Dent 2020; 50: 133-9.   DOI