Browse > Article
http://dx.doi.org/10.5624/isd.20200320

Cone-beam computed tomography artifacts in the presence of dental implants and associated factors: An integrative review  

Terrabuio, Bianca Rodrigues (Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of Sao Paulo)
Carvalho, Caroline Gomes (Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of Sao Paulo)
Peralta-Mamani, Mariela (Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of Sao Paulo)
da Silva Santos, Paulo Sergio (Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of Sao Paulo)
Rubira-Bullen, Izabel Regina Fischer (Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of Sao Paulo)
Rubira, Cassia Maria Fischer (Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of Sao Paulo)
Publication Information
Imaging Science in Dentistry / v.51, no.2, 2021 , pp. 93-106 More about this Journal
Abstract
Purpose: This study was conducted to review the literature regarding the types of cone-beam computed tomography (CBCT) artifacts around dental implants and the factors that influence their formation. Materials and Methods: A search strategy was carried out in the PubMed, Embase, and Scopus databases to identify published between 2010 and 2020, and 9 studies were selected. The implants included 306 titanium, titanium-zirconium, and zirconia implants, as well as 5 titanium cylinders. Results: The artifacts around the implants were the beam-hardening artifact, the streaking artifact, and band-like radiolucent areas. Some factors that influenced the formation of artifacts were the implant material, bone type, evaluated regions, distance, type of CBCT, field of view (FOV) size, milliamperage, peak kilovoltage (kVp), and voxel size. The beam-hardening artifact was the most widely reported, and it was minimized in protocols with a smaller FOV, larger voxels, and higher kVp. Conclusion: The risk and benefit of these protocols in individuals with dental implants must be considered, and clinical examinations and complementary radiographs play an essential role in implantology.
Keywords
Artifacts; Cone-Beam Computed Tomography; Dental Implants; Review;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Martins LAC, Queiroz PM, Nejaim Y, Vasconcelos KF, Groppo FC, Haiter-Neto F. Evaluation of metal artefacts for two CBCT devices with a new dental arch phantom. Dentomaxillofac Radiol 2020; 49: 20190385.   DOI
2 Naitoh M, Saburi K, Gotoh K, Kurita K, Ariji E. Metal artifacts from posterior mandibular implants as seen in CBCT. Implant Dent 2013; 22: 151-4.   DOI
3 Valiyaparambil JV, Yamany I, Ortiz D, Shafer DM, Pendrys D, Freilich M, et al. Bone quality evaluation: comparison of cone beam computed tomography and subjective surgical assessment. Int J Oral Maxillofac Implants 2012; 27: 1271-7.
4 Resnik RR, Kircos LT, Misch CE. Diagnostic imaging and techniques. In: Misch CE, Contemporary Implant Dentistry. 3rd ed. St. Louis, MO: Mosby; 2008. p. 38-67.
5 Ruprecht A. Oral and maxillofacial radiology: then and now. J Am Dent Assoc 2008; 139(Suppl): 5S-6S.   DOI
6 Alawaji Y, MacDonald DS, Giannelis G, Ford NL. Optimization of cone beam computed tomography image quality in implant dentistry. Clin Exp Dent Res 2018; 4: 268-78.   DOI
7 Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 2006; 72: 75-80.
8 Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am 2008; 52: 707-30.   DOI
9 White SC. Cone-beam imaging in dentistry. Health Phys 2008; 95: 628-37.   DOI
10 Scarfe WC, Li Z, Aboelmaaty W, Scott SA, Farman AG. Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Aust Dent J 2012; 57(Suppl 1): 46-60.   DOI
11 Nagarajappa AK, Dwivedi N, Tiwari R. Artifacts: the downturn of CBCT image. J Int Soc Prev Community Dent 2015; 5: 440-5.   DOI
12 Machado AH, Fardim KAC, de Souza CF, Sotto-Maior BS, Assis NMSP, Devito KL. Effect of anatomical region on the formation of metal artefacts produced by dental implants in cone beam computed tomographic images. Dentomaxillofac Radiol 2018; 47: 20170281.
13 Kerkfeld V, Meyer U. Higher resolution in cone beam computed tomography is accompanied by improved bone detection in peri-implant bone despite metal artifact presence. Int J Oral Maxillofac Implants 2018; 33: 1331-8.   DOI
14 Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol 2015; 44: 20140238.   DOI
15 Oliveira ML, Tosoni GM, Lindsey DH, Mendoza K, Tetradis S, Mallya SM. Influence of anatomical location on CT numbers in cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115: 558-64.   DOI
16 Bryant JA, Drage NA, Richmond S. Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system. Dentomaxillofac Radiol 2008; 37: 365-74.   DOI
17 Smeets R, Schollchen M, Gauer T, Aarabi G, Assaf AT, Rendenbach C, et al. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study. Dentomaxillofac Radiol 2017; 46: 20160267.   DOI
18 Carrafiello G, Dizonno M, Colli V, Strocchi S, Pozzi Taubert S, Leonardi A, et al. Comparative study of jaws with multislice computed tomography and cone-beam computed tomography. Radiol Med 2010; 115: 600-11.   DOI
19 Demirturk Kocasarac H, Ustaoglu G, Bayrak S, Katkar R, Geha H, Deahl ST 2nd, et al. Evaluation of artifacts generated by titanium, zirconium, and titanium-zirconium alloy dental implants on MRI, CT, and CBCT images: a phantom study. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127: 535-44.   DOI
20 Sancho-Puchades M, Hammerle CH, Benic GI. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography. Clin Oral Implants Res 2015; 26: 1222-8.   DOI
21 Gao L, Sun H, Lin T, Sui J, Ni X. Metal artifact reduction for dental implants in kilovoltage computed tomography using megavoltage cone-beam computer tomography. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2017; 34: 730-7.
22 Norton MR, Gamble C. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 2001; 12: 79-84.   DOI
23 Junqueira LC, Carneiro J. Histologia basica. 10th ed. Rio de Janeiro: Guanabara Koogan S.A.; 2004.
24 Nardi C, Molteni R, Lorini C, Taliani GG, Matteuzzi B, Mazzoni E, et al. Motion artefacts in cone beam CT: an in vitro study about the effects on the images. Br J Radiol 2016; 89: 20150687.   DOI
25 Shokri A, Jamalpour MR, Khavid A, Mohseni Z, Sadeghi M. Effect of exposure parameters of cone beam computed tomography on metal artifact reduction around the dental implants in various bone densities. BMC Med Imaging 2019; 19: 34.   DOI
26 Parsa A, Ibrahim N, Hassan B, Motroni A, van der Stelt P, Wismeijer D. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment. Int J Oral Maxillofac Implants 2012; 27: 1438-42.
27 Benic GI, Sancho-Puchades M, Jung RE, Deyhle H, Hammerle CH. In vitro assessment of artifacts induced by titanium dental implants in cone beam computed tomography. Clin Oral Implants Res 2013; 24: 378-83.   DOI
28 Schulze RK, Berndt D, d'Hoedt B. On cone-beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res. 2010; 21: 100-7.   DOI
29 de-Azevedo-Vaz SL, Peyneau PD, Ramirez-Sotelo LR, Vasconcelos Kde F, Campos PS, Haiter-Neto F. Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 550-6.   DOI
30 Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, et al. Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104: 829-36.   DOI
31 Nomura Y, Watanabe H, Shirotsu K, Honda E, Sumi Y, Kurabayshi T. Stability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral content. Clin Oral Implants Res 2013; 24: 543-8.   DOI
32 Valizadeh S, Vasegh Z, Rezapanah S, Safi Y, Khaeazifard MJ. Effect of object position in cone beam computed tomography field of view for detection of root fractures in teeth with intracanal posts. Iran J Radiol 2015; 12: e25272.   DOI
33 Naitoh M, Kurosu Y, Inagaki K, Katsumata A, Noguchi T, Ariji E. Assessment of mandibular buccal and lingual cortical bones in postmenopausal women. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104: 545-50.   DOI
34 Loubele M, Maes F, Jacobs R, Van Steenberghe D, White SC, Suetens P. Comparative study of image quality for MSCT and CBCT scanners for dentomaxillofacial radiology applications. Radiat Prot Dosimetry 2008; 129: 222-6.   DOI
35 Naitoh M, Katsumata A, Mitsuya S, Kamemoto H, Ariji E. Measurement of mandibles with microfocus x-ray computerized tomography and compact computerized tomography for dental use. Int J Oral Maxillofac Implants 2004; 19: 239-46.
36 Razavi T, Palmer RM, Davies J, Wilson R, Palmer PJ. Accuracy of measuring the cortical bone thickness adjacent to dental implants using cone beam computed tomography. Clin Oral Implants Res 2010; 21: 718-25.   DOI
37 Arisan V, Karabuda ZC, Avsever H, Ozdemir T. Convencional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-assisted implant placement. Part I: relationship of radiographic gray density and implant stability. Clin Implant Dent Relat Res 2013; 15: 893-906.   DOI
38 Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artifacts in CBCT: a review. Dentomaxillofac Radiol 2011; 40: 265-73.   DOI
39 Draenert FG, Coppenrath E, Herzog P, Muller S, Mueller-Lisse UG. Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dentomaxillofac Radiol 2007; 36: 198-203.   DOI
40 Zhu L, Chen Y, Yang J, Tao X, Xi Y. Evaluation of the dental spectral cone beam CT for metal artefact reduction. Dentomaxillofac Radiol 2019; 48: 20180044.   DOI
41 Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, et al. Quantification of metal artifacts on cone beam computed tomography images. Clin Oral Implants Res 2013; 24: 94-9.   DOI
42 Fontenele RC, Nascimento EH, Vasconcelos TV, Noujeim M, Freitas DQ. Magnitude of cone beam CT image artifacts related to zirconium and titanium implants: impact on image quality. Dentomaxillofac Radiol 2018; 47: 20180021.   DOI
43 Vasconcelos TV, Nascimento EH, Bechara BB, Freitas DQ, Noujeim M. Influence of cone beam computed tomography settings on implant artifact production: zirconia and titanium. Int J Oral and Maxillofac Implants 2019; 34: 1114-20.   DOI
44 Oliveira ML, Freitas DQ, Ambrosano GM, Haiter-Neto F. Influence of exposure factors on the variability of CBCT voxel values: a phantom study. Dentomaxillofac Radiol 2014; 43: 20140128.   DOI
45 Suzuki Y, Shimano T. The effective atomic number of the teeth. Shika Hoshasen 1976; 16: 63-72.
46 Hiraoka T, Kawashima K, Hoshino K, Takayama T, Narai K. Development of bone substitute materials. CODEN HCSKE 1987; suppl.4: 93-6.