Browse > Article
http://dx.doi.org/10.5624/isd.2013.43.3.135

Radiographic evaluation of the symphysis menti as a donor site for an autologous bone graft in pre-implant surgery  

Bari, Roberto Di (Department of Oral and Maxillofacial Sciences, School of Dentistry, Sapienza University of Rome)
Coronelli, Roberto (Dr. Coronelli Dental Clinic)
Cicconetti, Andrea (Department of Oral and Maxillofacial Sciences, School of Dentistry, Sapienza University of Rome)
Publication Information
Imaging Science in Dentistry / v.43, no.3, 2013 , pp. 135-143 More about this Journal
Abstract
Purpose: This study was performed to obtain a quantitative evaluation of the cortical and cancellous bone graft harvestable from the mental and canine regions, and to evaluate the cortical vestibular thickness. Materials and Methods: This study collected cone-beam computed tomographic (CBCT) images of 100 Italian patients. The limits of the mental region were established: 5 mm in front of the medial margin of each mental foramen, 5 mm under the apex of each tooth present, and above the inferior mandibular cortex. Cortical and cancellous bone volumes were evaluated using SimPlant software (SimPlant 3-D Pro, Materialize, Leuven, Belgium) tools. In addition, the cortical vestibular thickness (minimal and maximal values) was evaluated in 3 cross-sections corresponding to the right canine tooth (3R), the median section (M), and the left canine tooth (3L). Results: The cortical volume was $0.71{\pm}0.23mL$ (0.27-1.96 mL) and the cancellous volume was $2.16{\pm}0.76mL$ (0.86-6.28 mL). The minimal cortical vestibular thickness was $1.54{\pm}0.41mm$ (0.61-3.25 mm), and the maximal cortical vestibular thickness was $3.14{\pm}0.75mm$ (1.01-5.83 mm). Conclusion: The use of the imaging software allowed a patient-specific assessment of mental and canine region bone availability. The proposed evaluation method might help the surgeon in the selection of the donor site by the comparison between bone availability in the donor site and the reconstructive exigency of the recipient site.
Keywords
Grafting; Bone; Cone-Beam Computed Tomography; Bone Density; Bone Resorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yates DM, Brockhoff HC 2nd, Finn R, Phillips C. Comparison of intraoral harvest sites for corticocancellous bone grafts. J Oral Maxillofac Surg 2013; 71: 497-504.   DOI
2 Chiapasco M, Zaniboni M, Boisco M. Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. Clin Oral Implants Res 2006; 17 Suppl 2: 136-59.   DOI
3 Misch CM. Autogenous bone: is it still the gold standard? Implant Dent 2010; 19: 361.   DOI
4 Cawood JI, Howell RA. Reconstructive preprosthetic surgery. I. Anatomical considerations. Int J Oral Maxillofac Surg 1991; 20: 75-82.   DOI
5 Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 2006; 38: 758-68.   DOI
6 Helms JA, Schneider RA. Cranial skeletal biology. Nature 2003; 423: 326-31.   DOI
7 Silva FM, Cortez AL, Moreira RW, Mazzonetto R. Complications of intraoral donor site for bone grafting prior to implant placement. Implant Dent 2006; 15: 420-6.   DOI
8 Raghoebar GM, Louwerse C, Kalk WW, Vissink A. Morbidity of chin bone harvesting. Clin Oral Implants Res 2001; 12: 503-7.   DOI
9 Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res 2003; 5: 154-60.   DOI
10 Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res 1983; (174): 28-42.
11 Misch CM. Use of the mandibular ramus as a donor site for onlay bone grafting. J Oral Implantol 2000; 26: 42-9.   DOI
12 Pommer B, Tepper G, Gahleitner A, Zechner W, Watzek G. New safety margins for chin bone harvesting based on the course of the mandibular incisive canal in CT. Clin Oral Implants Res 2008; 19: 1312-6.   DOI
13 Verdugo F, Simonian K, Smith McDonald R, Nowzari H. Quantitation of mandibular symphysis volume as a source of bone grafting. Clin Implant Dent Relat Res 2010; 12: 99-104.
14 Burchardt H. Biology of bone transplantation. Orthop Clin North Am 1987; 18: 187-96.
15 Kau CH, Bozic M, English J, Lee R, Bussa H, Ellis RK. Conebeam computed tomography of the maxillofacial region - an update. Int J Med Robot 2009; 5: 366-80.
16 Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 2006; 72: 75-80.
17 Bähr W, Coulon JP. Limits of the mandibular symphysis as a donor site for bone grafts in early secondary cleft palate osteoplasty. Int J Oral Maxillofac Surg 1996; 25: 389-93.   DOI
18 De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 2009; 38: 609-25.   DOI
19 Torres MG, Campos PS, Segundo NP, Navarro M, Crusoé- Rebello I. Accuracy of linear measurements in cone beam computed tomography with different voxel sizes. Implant Dent 2012; 21: 150-5.   DOI
20 Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol 2008; 37: 10-7.   DOI
21 Nakano H, Mishima K, Ueda Y, Matsushita A, Suga H, Miyawaki Y, et al. A new method for determining the optimal CT threshold for extracting the upper airway. Dentomaxillofac Radiol 2013; 42: 26397438.   DOI
22 Naitoh M, Aimiya H, Hirukawa A, Ariji E. Morphometric analysis of mandibular trabecular bone using cone beam computed tomography: an in vitro study. Int J Oral Maxillofac Implants 2010; 25: 1093-8.
23 Neiva RF, Gapski R, Wang HL. Morphometric analysis of implant-related anatomy in Caucasian skulls. J Periodontol 2004; 75: 1061-7.   DOI
24 Maloney K, Bastidas J, Freeman K, Olson TR, Kraut RA. Cone beam computed tomography and SimPlant materialize dental Software versus direct measurement of the width and height of the posterior mandible: an anatomic study. J Oral Maxillofac Surg 2011; 69: 1923-9.   DOI
25 Montazem A, Valauri DV, St-Hilaire H, Buchbinder D. The mandibular symphysis as a donor site in maxillofacial bone grafting: a quantitative anatomic study. J Oral Maxillofac Surg 2000; 58: 1368-71.   DOI
26 Güngörmü M, Yilmaz AB, Erta U, Akgül HM, Yavuz MS, Harorli A. Evaluation of the mandible as an alternative autogenous bone source for oral and maxillofacial reconstruction. J Int Med Res 2002; 30: 260-4.   DOI
27 Yavuz MS, Buyukkurt MC, Tozoglu S, Dagsuyu IM, Kantarci M. Evaluation of volumetry and density of mandibular symphysis bone grafts by three-dimensional computed tomography. Dent Traumatol 2009; 25: 475-9.   DOI
28 Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003; 67: 932-49.
29 Verdugo F, Simonian K, Raffaelli L, D'Addona A. Computeraided design evaluation of harvestable mandibular bone volume: a clinical and tomographic human study. Clin Implant Dent Relat Res (in press).
30 Shapurian T, Damoulis PD, Reiser GM, Griffin TJ, Rand WM. Quantitative evaluation of bone density using the Hounsfield index. Int J Oral Maxillofac Implants 2006; 21: 290-7.
31 Silva IM, Freitas DQ, Ambrosano GM, Bóscolo FN, Almeida SM. Bone density: comparative evaluation of Hounsfield units in multislice and cone-beam computed tomography. Braz Oral Res 2012; 26: 550-6.   DOI
32 Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998; 11: 391-401.
33 Pikos MA. Mandibular block autografts for alveolar ridge augmentation. Atlas Oral Maxillofac Surg Clin North Am 2005; 13: 91-107.   DOI
34 Tuzi A, Di Bari R, Cicconetti A. 3D imaging reconstruction and impacted third molars: case reports. Ann Stomatol (Roma) 2012; 3: 123-31.