Browse > Article
http://dx.doi.org/10.11108/kagis.2021.24.1.126

A Study for Monitoring Soil Liquefaction Occurred by Earthquakes Using Soil Moisture Indices Derived from the Multi-temporal Landsat Satellite Imagery Acquired in Pohang, South Korea  

PARK, Insun (Geospatial Research Center, GEO C&I., Ltd.)
KIM, Kyoung-Seop (Geospatial Research Center, GEO C&I., Ltd.)
HAN, Byeong Cheol (Geospatial Research Center, GEO C&I., Ltd.)
CHOUNG, Yun-Jae (Geospatial Research Center, GEO C&I., Ltd.)
GU, Bon Yup (Geospatial Research Center, GEO C&I., Ltd.)
HAN, Jin Tae (Korea Institute of Civil Engrg. and Building Technology)
KIM, Jongkwan (Korea Institute of Civil Engrg. and Building Technology)
Publication Information
Journal of the Korean Association of Geographic Information Studies / v.24, no.1, 2021 , pp. 126-137 More about this Journal
Abstract
Recently, the number of damages on social infrastructure has increased due to natural disasters and the frequency of earthquake events that are higher than magnitude 3 has increased in South Korea. Liquefaction was found near the epicenter of a 5.4 magnitude earthquake that occurred in Pohang, South Korea, in 2017. To explore increases in soil moisture index due to soil liquefaction, changes in the remote exploration index by the land cover before and post-earthquake occurrence were analyzed using liquefaction feasibility index and multi-cyclical Landsat-8 satellite images. We found that the soil moisture index(SMI) in the liquefaction region immediately after the earthquake event increased significantly using the Normal Vegetation Index(NDVI) and Surface Temperature(LST).
Keywords
Natural Hazard; Earthquake; Soil Liquefaction; Liquefaction Potential Index(LPI); Soil Moisture Index(SMI); Landsat-8 satellite image;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bannari, A., H. Rhinane and H. Bahi. 2018. Synergy between SMOS-MIRAS and Landsat-OLI/TIRS Data for Soil Moisture Mapping before, during, and after Flash-Flood Storm in Southwestern Morocco, Chapter 2:5-28.
2 Choung, Y.J., K.K. Yu and Y.I. Lee. 2020. A Study on Monitoring the Land Surface Temperature Changes Caused by Constructions of Rainwater Villages Using the Multi-temporal Landsat-8 Satellite Images. Journal of the Korean Association of Geographic Information Studies 23(1): 30-40.
3 Choung, Y.J., Y.I. Choung and S.Y. Choi. 2018. Assessment of the Relationship between Air Temperature and TOA Brightness Temperature in Different Seasons Using Landsat-8 TIRS. Journal of the Korean Association of Geographic Information Studies 21(2):68-79..   DOI
4 Giglio, L., J. Descloitres, C.O. Justice and Y.J. Kaufman. 2013. An enhanced contextual fire detection algorithm for MODIS, Rem. Sens, Environm. 87(2-3): 273-282.
5 Gillespie, T.W., J. Chu, E. Frankenberg and D. Thomas. 2007. Assesment and Prediction of Natural Hazards from Satellite Imagery. Prog Phys Geogr. Oc.t; 31(5):459-470.   DOI
6 Guha. S., H. Govi, A. Dey and N. Gill. 2018. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy, EUROPEAN JOURNAL OF REMOTE SENSING. 51 (1):667-678.   DOI
7 Ha, I.S. and M.S. Jung. 2018. A Case Study on Liquefaction occurred during the Pohang Earthquak. Earthquake Engineering Society of Korea 15:2.
8 Hazen, A. 1920. Hydraulic Fill Dams. Transactions of the American Society of Civil Engineers. 83:1717-1745.
9 Hunt, E.D., K.G. Hubbard, D.A. Wilhite, T.J. Arkebauer and A.L. Dutcher. 2009. The development and evaluation of a soil moisture index, Int. J. Climatol. 29:747-759.   DOI
10 Iwasaki, T., F. Tatsuoka, K. Tokida and S. Yasuda. 1978. A Practical Method for Assessing Soil Liquefaction Potential Based on Case Studies at Various site in Japan. 5th Japan Earthquake Engineering Symposium. Vol(2):641-648.
11 Iwasaki, T., K. Tokida, F. Tatsuoka, S. Watanabe, S. Yasuda and H. Sato. 1982. Microzonation for soil liquefaction potential using simplified methods. Proceedings 3rd International Conference on Microzonation, Seattle, USA. 1319-1330.
12 Jung, M.S., H.S. Kang, S.Y. Park and G.H. Na. 2018. Pohang liquefaction risk assessment, Disaster & Safety. 20(1):14-19.
13 Kaufman, Y., C.O. Justice, L.P. Flynn, J.D Kendall, E.M. Prins, L. Giglio, D.E. Ward, W.P. Menzel and A.W. Setzer. 1998. Potential grobal fire monitoring from EOS-MODIS, J. Geophys. Res. 103(D24): 32,215-32, 238.   DOI
14 Kim, J.K., T.Y. Kwak, J.T. Han, B.Y. Hwang and K.S. Kim. 2020. Evaluation of Dynamic Ground Properties of Pohang Area Based on In-situ and Laboratory Test. JOURNAL OF THE KOREAN GEOTECHNICAL SOCIETY. 36(9):5-20.   DOI
15 Kim, K.S., G.S. MOON and Y.J. CHOUNG. 2020. Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data. Journal of the Korean Association of Geographic Information Studies 23(2): 70-82.   DOI
16 Korea Meteorological Administration(KMA). 2017 Earthquake Annual Report. p.214.
17 Korea Meteorological Administration(KMA), Open MET Data Portal, Weather Data Service. https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36. (Accessed January 20, 2021).
18 Lee, H., J.K. Kim, K. Ko,Y.S. Ghim, J. Kim and S.R. Lee. 2018. Characteristics of sand volcanoes caused by 2017 Pohang Earthquake-induced liquefaction and their paleoseismological approach. Journal of the Geological Society of Korea 54(3):221-235.   DOI
19 National Institute of Meteorological Sciences (NIMS). 2016. Generation of Land Surface Temperature and Analysis of theEffects in Urban Green Areas Using Landsat-8 Satellite Data. Technical Notes, NIMS, Seogui-po, Korea. p.53.
20 Saha. A., M. Patil, V.C. Goyal and D.S. Rathore. 2019. Assessment and Impact of Soil Moisture Index in Agricultural Drought Estimation Using Remote Sensing and GIS Techniques, MDPI. 7(1):2.
21 Salvia, S., S. Stramondoa, G.J. Funningb, A. Ferrettic, F. Sartid and A. Mouratidisd., 2012. The Sentinel-1 mission 0for the improvement of the scientific understanding and the operational monitoring of the seismic cycle, Remote Sensing of Environment. 120(15):164-174.   DOI
22 SEO M.W., C.G. SUN and M.H. OH. 2009. LPI-based Assessment of Liquefaction Potential on the West Coastal Region of Korea, Journal of the Earthquake Engineering Society of Korea. 13(4):1-13.   DOI
23 Seed, H.B. and L.M. Idriss. 1971. Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, ASCE. 97(SM9):1249-1273.   DOI
24 United States Geological Survey(USGS). 2015. Landsat 8(L8) Data Users Handbook. https://www.usgs.gov/land-resources/nli/landsat/landsat-8-data-users-handbook. (Accessed January 15, 2021).
25 Zeri, Mi., R.C.S. Alvala, R. Carneiro, G. Cunha-Zeri, J.M. Costa, L.R. Spatafora, D. Urbano, M. Vall-Llossera and J. Marengo. 2018. Tools for Communicating Agricultural Drought over the Brazilian Semiarid Using the Soil Moisture Index, Water. 10(10):1421.   DOI