Browse > Article
http://dx.doi.org/10.9710/kjm.2014.30.4.343

The Effect of Neuroactive Compounds on Settlement of Pacific Oyster, Crassostrea gigas Pediveliger Larvae  

Hur, Youngbaek (Southeast Sea Fisheries Research Institute, NFRDI)
Jo, Qtae (Southeast Sea Fisheries Research Institute, NFRDI)
Byun, Soongyu (Southeast Sea Fisheries Research Institute, NFRDI)
Mun, Tesek (Southeast Sea Fisheries Research Institute, NFRDI)
Publication Information
The Korean Journal of Malacology / v.30, no.4, 2014 , pp. 343-351 More about this Journal
Abstract
We determined the effects of neuroactive compounds known as synthetic larval settlement inducers on the settlement of the Pacific oyster C. gigas pediveliger on the larval collector. Six types of the inducers, serotonin (5-HT), ${\gamma}$-amino butyric acid (GABA), L-3,4-dihydroxyphenylalanine (L-DOPA), norepinephrine, epinephrine and methyl bromide (MB) were tested. All the chemicals induced larval settlement, MB being the most effective with settlement rate of $42.7{\pm}2.7%$, followed by GABA ($35.4{\pm}2.0%$), 5-HT ($29.1{\pm}2.2%$), L-DOPA ($19.2{\pm}2.1%$), epinephrine ($15.2{\pm}0.9%$), and norepinephrine ($11.0{\pm}1.2%$). The chemicals ${\gamma}$-amino butyric acid and methyl bromide were also better in terms of settled density on the collector with their respective density of $1.97{\pm}1.42$ and $2.37{\pm}1.86ind/cm^2$, reminiscent of being most effective candidates for a larval settlement inducer in the oyster hatchery.
Keywords
Neuroactive compounds; Induce settlement; Settlement rate; Larvae; Crassostera gigas; Oyster;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alfaro, A.C., Young, T., Ganesan, A.M. (2011) Regulatory effects of mussel (Aulacomya maoriana Iredale 1915) larval settlement by neuroactive compounds, amino acids and bacterial biofilms. Aquaculture, 322-323: 158-168.   DOI   ScienceOn
2 Andrews, W.R., Targett, N.M. and Epifanio, C.E. (2001) Isolation and characterization of the metamorphic inducer of the common mud crab, Panopeus herbstii. Journal of Experimental Marine Biology and Ecology, 261: 121-134.   DOI   ScienceOn
3 Baloun, A.J., Morse, D.E. (1984) Ionic control of settlement and metamorphosis in larval Haliotis rufescens (Gastropoda). Biology Bulletin, 167: 124-138.   DOI
4 Barlow, L.A. (1990) Electrophysiological and behavioral responses of larvae of the red abalone (Haliotis rufescens) to settlement-inducing substances. Bulletin of Marine Science, 46: 537-554.
5 Beiras, R., Widdows, J. (1995) Induction of metamorphosis in larvae of the oyster Crassostrea gigas using neuroactive compounds. Marine Biology, 123: 327-334.   DOI
6 Bonar, D.B., Coon, S.L., Walch, M., Weiner, R.M. and Fitt, W. (1990) Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bulletin of marine Science, 46: 484-498.
7 Coon, S.L., Bonar, D.B. and Weiner, R.M. (1985). Induction of settlement and metamorphosis of the Pacific oyster, Crassostrea gigas (Thunberg), by L-DOPA and catecholamines. Journal of Experimental Marine Biology and Ecology, 94: 211-221   DOI   ScienceOn
8 Coon, S.L., Bonar, D.B., Weiner, R.M. (1986) Chemical production of clutchless oyster spat using epinephrine and norepinephrine. Aquaculture, 58: 255-262.   DOI
9 Coon, S.L., Fitt, W.K., Bonar, D.B. (1990a). Competence and delay of metamorphosis in the Pacific oyster Crassostrea gigas. Marine Biology, 106(3): 379-387.   DOI
10 Coon, S.L., Walch, M., Fitt, W.K., Weiner, R.M., Bonar, D.B. (1990b) Ammonia induces settlement behavior in oyster larvae. The Biological Bulletin, 179(3): 297-303.   DOI
11 Couper, J.M., Leise, E.M. (1996) Serotonin injections induce metamorphosis in larvae of the gastropod mollusc Ilyanassa obsoleta. Biology Bulletin, 191: 178-186.   DOI
12 Henderson, B.A. (1983) Handling and Remote Setting Techniques for the Pacific oyster larvae, Crassostrea gigas. Master's thesis, Department of Fisheries and Wildlife, 37. Oregon State University. OR
13 Greene, J.K., Grizzle, R.E., 2005. Oyster (Crassostrea virginica Gmelin) restoration studies in the Great Bay estuary, New Hampshire. Final Report for NOAA Award Number NA03NOS4200060..
14 Hadfield, M.G., 1978. Metamorphosis in marine molluscan larvae: an analysis of stimulus and response. In: Chia, F.S. and Rice, M.E. Eds, Settlement and Metamorphosis of Marine Invertebrate Larvae. 165-175. Elsevier, New York.
15 Hadfield, M.G. and Paul, V.J. (2001). Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae. In: McClintock, J.B., Baker, B.J. (Eds.), Marine Chemical Ecology. 431-461. CRC press, New York.
16 Hur, Y.B., Min, K.S., Kim, T.E., Lee, S.J. and Hur, S.B. (2008) Larvae growth and biochemical composition change of the Pacific oyster Crassostrea gigas, larvae during artificial seed production. Journal of aquaculture, 21: 203-212.
17 Jeon, C.Y., Hur Y.B. and Cho, K.C. (2013). The Effect of Water Temperature and Salinity on Settlement of Pacific Oyster, Crassostrea gigas Pediveliger Larvae. Korean Journal of Malacology, 28: 21-28.   DOI
18 Jensen, R.A., Morse, D.E., Petty, R.L. and Hooker, N. (1990) Artificial induction of larval metamorphosis by free fatty acids. Marine Ecological Progress of Service, 67: 55-71.   DOI
19 Johnson, C.R., Muir, D.G. and Reysenbach, A.L. (1991) Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae. Marine Ecological Progress of Service, 74: 281-294.   DOI
20 Min, K.S., Chang, Y.J., Park, D.W., Jung, C.G., Kim, D.H. and Kim, G.H. (1995) Studies on rearing conditions for mass seedling production in Pacific oyster larvae, Crassostrea gigas (Thunberg). Bulletin of National Fisheries Research and Development Agency, 49: 91-111.
21 Min. S.K., Kim, T.I., Hur, S.B., Hur, Y.B., Chun, C.Y. and Kim, D.H. (1999) Growth and survival of the artificial and natural seeding in the Pacific oyster, Crassostrea gigas (Thunberg). Bulletin of National Fisheries Research and Development Agency, 57: 43-53.
22 Morse, D.E., Hooker, N., Duncan, H., Jensen, L. (1979) ${\gamma}$-Aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science, 204: 407-410.   DOI   ScienceOn
23 Morse, D.E. (1990) Recent progress in larval settlement and metamorphosis: closing the gaps between molecular biology and ecology. Bulletin of marine Science, 46: 465-483.
24 Murthy, P.S., Venugopalan, V.P., Nair, K.V.K., Subramoniam, T. (2009) Larval settlement and surfaces: implications in development of antifouling strategies. In: Flemming, H.C., Murthy, P.S., Venkatesan, R., Cooksey, K. (Eds.), Marine and Industrial Biofouling. Springer, Berlin, pp. 233-263
25 Najiah, M., Nadirah, M., Lee, K.L., Lee, S.W., Wendy, W., Ruhil, H.H., Nurul, F.A. (2008) Bacteria flora and heavy metals in cultivated oysters Crassostrea iredalei of Setiu Wetland, East Coast Penincular Malaysia. Veterinary Research Communications, 32: 377-381.   DOI
26 Nosho, T.Y., Chew, K.K. (1991) Remote setting and nursery culture for shellfish growers. Washington Sea Grant Workshop Record (68 pp.).
27 Okano, K., Shimizu, K., Satuito, C.G., Fusetani, N. (1996) Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa. Journal of Experimental Biology, 199: 2131-2137.
28 Yang, J.L., Satuito, C.G., Bao, W.Y., Kitamura, H. (2008) Induction of metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis Lamarck, 1819 using neuroactive compounds, KCl, NH4Cl and organic solvents. Biofouling, 24: 461-470.   DOI   ScienceOn
29 Teh, C.P., Zulfigar, Y., Tan, S.H. (2012) Epinephrine and l-DOPA promote larval settlement and metamorphosis of the tropical oyster, Crassostrea iredalei (Faustino, 1932): An oyster hatchery perspective. Aquaculture, 338-341: 260-263.   DOI   ScienceOn
30 Todd, C.D. (1985) Settlement-timing hypothesis: reply to Grant and Williamson. Marine Ecological Progress of Services, 23: 197-202.   DOI
31 Yang, J.L., Li, Y.F., Satuito, C.G., Bao, W.Y., Kitamura, H. (2011) Larval metamorphosis of the mussel Mytilus galloprovincialis Lamarck, 1819 in response to neurotransmitter blockers and tetraethylammonium. Biofouling, 27: 193-199.   DOI   ScienceOn
32 Yang, J.L., Li, S.H., Li, Y.F., Liu, Z.W., Liang, X., Bao, W.Y., Li, J.L. (2013) Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture, 396-399: 106-112.   DOI   ScienceOn
33 Yu, X., He, W., Gu, J.D., He, M. and Yan, Y. (2008) The effect of chemical cues on settlement of pearl oyster Pinctada fucata martensii (Dunker) larvae. Aquaculture, 277: 83-91.   DOI   ScienceOn
34 Walch, M., Weiner, R.M., Colwell, R.R. and Coon, S.L. (1999) Use of l-DOPA and soluble bacterial products to improve set of Crassostrea virginica (Gmelin, 1791) and C. gigas (Thunberg, 1793). Journal of Shellfish Research, 18: 133-138.
35 Wassnig, M., Southgate, P.C. (2012) Effects of settlement cues on behaviour and substrate attachment of hatchery reared winged pearl oyster (Pteria penguin) larvae. Aquaculture, 344-349: 216-222.   DOI   ScienceOn
36 Fang, Q., Lin, B.S., Fang, Y.Q. (2001) Induction of larval settlement and metamorphosis of two oysters Crassostrea gigas and Ostrea cucullata by some chemicals. Journal of Oceanography Taiwan Strait, 20(1): 20-26.
37 Crisp, D.J. (1984) Overview of research on marine invertebrate larvae. In: Grant, P.T. and Mackie, A.M. Eds., Chemoreception in Marine Organisms, vol. 1. 177-265. Academic Press, London.
38 Doroudi, M.S. and Southgate, P.C. (2002) The effect of chemical cues on settlement behaviour of blacklip pearl oyster (Pinctada margaritifera) larvae. Aquaculture, 209: 117-124.   DOI   ScienceOn
39 Faimali, M., Garaventa, F., Terlizzi, A., Chiantore, M. and Cattaneo-Vietti, R. (2004) The interplay of substrate nature and biofilm formation in regulating Balanus amphitrite Darwin, 1854 larval settlement. Journal of Experimental Marine Biology and Ecology, 306: 37-50.   DOI   ScienceOn
40 Ganesan. A.M., Alfaro A.C., Brooks J.D. and Higgins C.M. (2010) The role of bacterial biofilms and exudates on the settlement of mussel (Perna canaliculus) larvae. Aquaculture, 306: 388-392.   DOI   ScienceOn
41 Gao, R.C., Liu, W.B. (2006) Induction of larval settlement and metamorphosis of Coelomactra antiquata using some chemicals. Journal of Fisheries China, 30(5): 597-602.
42 Garcia-Lavandeira, M., Silva, A., Abad, M., Pazos, A.J., Sanchez, J.L., Perez-Paralle, M.L. (2005) Effects of GABA and epinephrine on the settlement and metamorphosis of the larvae of four species of bivalve molluscs. Journal of Experimental Marine Biology and Ecology, 316: 149-156.   DOI   ScienceOn
43 Grant, M.N., Meritt, D.W., Kimmel, D.G. (2013) Chemical induction of settlement behavior in larvae of the eastern oyster Crassostrea virginica (Gmelin). Aquaculture, 402-403: 84-91.   DOI   ScienceOn
44 Leitz, T. and Wagner, T. (1993) The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinate. Marine Biology, 115: 173-178.   DOI   ScienceOn
45 Kang, K.H., Kim, B.H., Kim, J.M. 2004. Induction of larval settlement and metamorphosis of the abalone, Haliotis discus hannai larvae using bromomethane and potassium chloride. Aquaculture, 230: 249-259.   DOI   ScienceOn
46 Keough, M.J. and Raimondi, P.T. (1996) Responses of settling invertebrate larvae to bioorganic films: Effects of large-scale variation in films. Journal of Experimental Marine Biology and Ecology, 207: 59-78.   DOI   ScienceOn
47 Leise, E.M., Thavaradhara, K., Durham, N.R., Turner, B.E. (2001) Serotonin and nitric oxide regulate metamorphosis in the marine snail Ilyanassa obsoleta. American Zoologist, 41: 258-267.   DOI   ScienceOn
48 Li, H.F., Lin, W., Zhang, G., Cai, Z.H., Cai, G.P., Chang, Y.Q., Xing, K.Z. (2006) Enhancement of larval settlement and metamorphosis through biological and chemical cues in the abalone Haliotis diversicolor suertexta. Aquaculture, 258(1-4): 416-423.   DOI   ScienceOn
49 Maki, J.S., Rittschof, D., Schmidt, A.R., Snyder, A.G. and Mitchell, R. (1989) Factors controlling attachment of bryozoan larvae: a comparison of bacterial films and unfilmed surfaces. Biological Bulletin, 177: 295-302.   DOI   ScienceOn
50 Martinez, G., Aguilera, C. and Campos, E.O. (1999) Induction of settlement and metamorphosis of the scallop Argopecten purpuratus Lamarck by excess K+ and epinephrine: energetic costs. Journal of Shellfish Research, 18: 41-46.
51 Mesias-Gansbiller, C., Silva, A., Maneiro, V., Pazos, A., Sanchez, J.L., perez-Paralle, M.L. (2013) Effects of chemical cues on larval settlement of the flat oyster (Ostrea edulis L.): A hatchery approach. Aquaculture, 376-379: 85-89.   DOI   ScienceOn
52 Qian, P.Y. (1999) Larval settlement of polychaetes. Hydrobiologia, 402: 239-253.   DOI   ScienceOn
53 Osborne, N.N. (1971) Occurrence of GABA and taurine in the nervous systems of the dogfish and some invertebrates. Comparative and General Pharmacology, 2: 433-438.   DOI   ScienceOn
54 Pawlik, J.R. (1990) Natural and artificial induction of metamorphosis of Phragmatopoma lapidosa californica (Polychaeta: Sabellariidae), with a critical look at the effects of bioactive compounds on marine invertebrate larvae. Bulletin of Marine Science, 46: 512-536.
55 Pawlik, J.R. (1992) Chemical ecology of the settlement of benthic marine invertebrate. Oceanogr. Marine Annual Review, 30: 273-335.
56 Rodriguez, S.R., Ojeda, F.P. and Inestrosa, N.C. (1993) Settlement of benthic marine invertebrates. Marine Ecological Progress of Service, 97: 193-207.   DOI
57 Sanchez-Lazo, C., Martinez-Pita, I., Young, T., Alfaro, A.C. (2012) Induction of settlement in larvae of the mussel Mytilus galloprovincialis using neuroactive compounds. Aquaculture, 344-349: 210-215.   DOI   ScienceOn
58 Schousboe, A., Waagepetersen, H.S. (2010) Serotonin (5-hydroxytrytamine; 5-HT): receptors. In: Squire, L.R. (Ed.), Encyclopedia of Neuroscience 4: Neurotransmitters and Receptors. Science Press, Beijing, pp. 168-172.
59 Tamburri, M.N., Zimmer-Faust, R.K. and Tamplin, M.L. (1992) Natural sources and properties of chemical inducers mediating settlement of oyster larvae: a re-examination. Biological Bulletin, 183: 327-338.   DOI   ScienceOn
60 Taniguchi, K., Kurata, K., Maruzoi, T., Suzuki, M., (1994) Dibromomethane, a chemical inducer of larval settlement and metamorphosis of the sea urchin, Strongylocentrotus nudus. Fish. Sci., 60: 795-796.   DOI   ScienceOn
61 Zimmer-Faust, R.K. and Tamburri, M.N. (1994) Chemical identity and ecological implications of a waterborne, larval settlement cue. Limnology and Oceanography, 39: 1075-1087.   DOI   ScienceOn
62 Weiner, R.M., Walch, M., Labare, M.P., Bonar, D.B. and Colwell, R.R. (1989) Effect of biofilms of the marine bacterium Alteromonas colwelliana (LST) on set of the oysters Crassostrea gigas (Thunberg, 1793) and C. virginica (Gmelin, 1791). Journal of Shellfish Research, 8: 117-123.
63 Zhao, B. and Qian, P.Y. (2002) Larval settlement and metamorphosis in the slipper limpet Crepidula onyx (Sowerby) in response to conspecific cues and the cues from biofilm. Journal of Experimental Marine Biology and Ecology, 269: 39-51.   DOI   ScienceOn
64 Zhao, B., Zhang, S., Qian, P.Y. (2003) Larval settlement of the silver-or goldlip pearl oyster Pinctada maxima (Jameson) in response to natural biofilms and chemical cues. Aquaculture, 220: 883-901.   DOI   ScienceOn