Browse > Article
http://dx.doi.org/10.9710/kjm.2013.29.3.181

Analysis of heat, cold or salinity stress-inducible genes in the Pacific abalone, Haliotis discus hannai, by suppression subtractive hybridization  

Nam, Bo-Hye (Biotechnology Research Division, National Fisheries Research & Development Institute)
Park, Eun-Mi (Imported Food Analysis Division, Center for Food and Drug Analysis, Busan Regional Ministry of Food and Drug Safety)
Kim, Young-Ok (Biotechnology Research Division, National Fisheries Research & Development Institute)
Kim, Dong-Gyun (Biotechnology Research Division, National Fisheries Research & Development Institute)
Jee, Young-Ju (Biotechnology Research Division, National Fisheries Research & Development Institute)
Lee, Sang-Jun (Biotechnology Research Division, National Fisheries Research & Development Institute)
An, Cheul Min (Biotechnology Research Division, National Fisheries Research & Development Institute)
Publication Information
The Korean Journal of Malacology / v.29, no.3, 2013 , pp. 181-187 More about this Journal
Abstract
In order to investigate environmental stress inducible genes in abalone, we analyzed differentially expressed transcripts from a Pacific abalone, Haliotis discus hannai, after exposure to heat-, cold- or hyposalinity-shock by suppression subtractive hybridization (SSH) method. 1,074 unique sequences from SSH libraries were composed to 115 clusters and 986 singletons, the overall redundancy of the library was 16.3%. From the BLAST search, of the 1,316 ESTs, 998 ESTs (75.8%) were identified as known genes, but 318 clones (24.2%) did not match to any previously described genes. From the comparison results of ESTs pattern of three SSH cDNA libraries, the most abundant EST was different in each SSH library: small heat shock protein p26 (sHSP26) in heat-shock, trypsinogen 2 in cold-shock, and actin in hyposalinity SSH cDNA library. Based on sequence similarities, several response-to-stress genes such as heat shock proteins (HSPs) were identified commonly from the abalone SSH libraries. HSP70 gene was induced by environmental stress regardless of temperature-shock or salinity-stress, while the increase of sHSP26 mRNA expression was not detected in cold-shock but in heat-shock condition. These results suggest that the suppression subtractive hybridization method is an efficient way to isolate differentially expressed gene from the invertebrate environmental stress-response transcriptome.
Keywords
Pacific abalone; Suppression subtractive hybridization; Expressed sequence tags; Response-to-stress gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., Kerlayage, A.R., McCombie, W.R. and Venter, J.C. (1991) Complementary cDNA sequencing expressed sequence tags and human genome project. Science, 252; 1651-1656.   DOI   ScienceOn
2 Cheng, W., Hsiao, I.S. and Chen, J.C. (2004a) Effect of ammonia on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish and Shellfish Immunology, 17:193-202.   DOI   ScienceOn
3 Cheng, W., Hsiao, I.S. and Chen, J.C. (2004b) Effect of nitrite on immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Disease of Aquatic Organisms, 60:157-164.   DOI
4 Cheng, W., Hsiao, I.S., Hsu, C.H. and Chen, J.C. (2004c) Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish and Shellfish Immunology, 17:235-243.   DOI   ScienceOn
5 Cheng, W., Juang, F.M. and Chen, J.C. (2004d) The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish and Shellfish Immunology, 16: 295-306.   DOI   ScienceOn
6 Cheng, W., Li, C.H. and Chen, J.C. (2004e) Effect of dissolved oxygen on the immune response of Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Aquaculture, 232: 103-115.   DOI   ScienceOn
7 De Zoysa, M., Nikapitiya, C., Oh, C., Whang, I., Shin, H.J. and Lee, J. (2012) cDNA microarray analysis of disk abalone genes in gill and hemocytes after viral hemorrhagic septicemia virus (VHSV) challenge. Fish and Shellfish Immunology, 32: 1205-1215.   DOI   ScienceOn
8 Diatchenko, L., Lau, Y.F., Campbell, A.P., Chenchik, A., Mogadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Syerdlov, E.D. and Siebert, P.D. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceeding National Academic Science USA, 93: 6025-6030.   DOI   ScienceOn
9 Hannon, C., Officer, R.A. and Le Dorven, J. (2013) Review of the technical challenges facing aquaculture of the European abalone Haliotis tuberculata in Ireland. Aquaculture International, 21: 243-245.   DOI   ScienceOn
10 Hooper, C., Day, R., Slocombe, R., Handlinger, J. and Benkendorff, K. (2007) Stress and immune responses in abalone: limitations in current knowledge and investigative methods based on other models. Fish and Shellfish Immunology, 22: 363-379.   DOI   ScienceOn
11 Lindquist, S. (1986) The heat-shock response. Annual Review Biochemistry, 55: 1151-1191.   DOI   ScienceOn
12 Malham, S., Lacoste, A., Gelebart, F., Cueff, A. and Poulet, S. (2003) Evidence for a direct link between stress and immunity in the mollusk Haliotis tuberculata. Journal of Experimental Zoology, 295: 136-144.
13 Martelle, L. and Tjeerdema, R.S. (2001) Combined effects of pentachorophenol and salinity stress on chemiluminescence activity in two species of abalone. Aquatic Toxicology, 51: 351-362.   DOI   ScienceOn
14 Ottaviani, E. and Franceschi, C. (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunology Today, 18: 169-173.   DOI   ScienceOn
15 Parsons, J.D. (1995) Improved tools for DNA comparison and clustering. Comparative Applied Bioscience, 11: 603-613.