Browse > Article
http://dx.doi.org/10.9710/kjm.2013.29.1.1

Variation of nitric oxide concentrations in response to shaking stress in the Manila clam Ruditapes philippinarum  

Park, Kyung-Il (Department of Aquatic Life Medicine, Kunsan National University)
Publication Information
The Korean Journal of Malacology / v.29, no.1, 2013 , pp. 1-6 More about this Journal
Abstract
This study aimed to evaluate the effects of shaking stress in the hemolymph of the Manila clam Ruditapes philippinarum by quantification of nitric oxide (NO) levels. The clams were divided into 3 groups as follows: clams placed in a plain container (control), clams injected with nitro-L-arginine methyl ester (NAME, an NO inhibitor), and clams in a container filled with nylon fiber at a density of $1kg/m^3$. Subsequently, each group was placed in sea water and shaken at 100 rpm for 6 h. The concentration of NO was quantified by using DAF assay and Griess assay. Both the assays showed that while shaking significantly increased the NO concentration, the NO inhibitor reduced the NO concentration in the hemolymph of the clams tested. In addition, the nylon fiber, which was used as a filler, effectively prevented the increase in NO concentration. This result suggests that measurement of NO concentration is a useful tool for evaluation of physiological stress in marine bivalves. In addition, it should be considered that a filler is necessary when dredge fishing or the suspended clam culture method is developed.
Keywords
nitric oxide; immune response; Ruditapes philippinarum; stress; clam culture;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Froglia, C. (1989) Clam fisheries with hydraulic dredges in the Adriatic sea. In: Caddy, J. F. (ed.), Marine Invertebrate Fisheries: Their Assessment and Management. Wiley & Sons, Inc. pp. 507-521.
2 Gagne, F., Andre, C., Cejka, P., Hausler, R., Fournier, M. and Blaise, C. (2008) Immunotoxic effects on freshwater mussels of a primary-treated wastewater before and after ozonation: a pilot plant study. Ecotoxicology and Environmental Safety, 69: 366-73.   DOI   ScienceOn
3 Gagne, F., Berube, E., Fournier, M. and Blaise, C. (2005) Inflammatory properties of municipal effluents to Elliptio complanata mussels: lack of effects from anti-inflammatory drugs. Comparative Biochemistry and Physiology (C), 141: 332-337.
4 Gillam, M.B., Sherman, M.P., Griscavage, J.M. and Ignarro, L.J. (1993) A spectrophotometric assay for nitrate using NADPH oxidation by Aspergillus nitrate reductase. Analytical Biochemistry, 212: 359-365.   DOI   ScienceOn
5 Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S. and Tannenbaum, S.R. (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological samples. Analytical Biochemistry, 126: 131-138.   DOI   ScienceOn
6 Guevara, I., Iwanejko, J., Dembinska-Kiec, A., Pankiewicz, J., Wanat, A., Anna, P., Golabek, I., Bartus, S., Malczewska-Malec, M. and Szczudlik A. (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clinica Chimica Acta, 274: 177-188.   DOI   ScienceOn
7 Navarro-Antolin, J. and Lamas, S. (2001) Nitrosative stress by cyclosporin A in the endothelium: studies with the NO-sensitive probe diaminofluorescein-2/ diacetate using flow cytometry. Nephrollogy Dialysis Transplantation, 16: 6-9.   DOI
8 NFRDI (2011) A Study on the Stability of Aquaculture in Manila Clam, Ruditapes philippinarum. Report of NFRDI, pp. 80.
9 Pais, A., Chessa, L.A., Serra, S. and Ruiu, A. (2006) An alternative suspended culture method for the Mediterranean carpet clam, Tapes decussatus (L.) in the Calich lagoon (North western Sardinia). Biologia Marina Mediterranea, 13: 134-135.
10 Palmer, R.M.J., Ferrige, A.G. and Moncadab, S. (1987) Nitric oxide release accounts for the biological activity of endothelium derived relaxing factor. Nature, 327: 524-526.   DOI   ScienceOn
11 Skaleric, U., Gaspirc, B., McCartney-Francis, N., Masera, A. and Wahl, S.M. (2006) Proinflammatory and Antimicrobial Nitric oxide in ginival fluid of Diabetic patients with Periodontal disease. Infection and Immunity, 74: 7010-7013.   DOI   ScienceOn
12 Sun, J., Zhang, X., Broderick, M. and Fein, H. (2003) Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors, 3: 276-284.   DOI
13 Zamora, R., Vodovotz, Y. and Billiar, T.R. (2000) Inducible nitric oxide synthase and inflammatory disease. Molecular Medicine, 6: 347-373.
14 Taffala, C., Gomez-Leon, J., Novoa, B. and Figueras, A. (2003). Nitrite oxide production by carpet shell calm (Ruditapes decussatus) hemocytes. Developmental and Comparative Immunology, 27: 197-205   DOI   ScienceOn
15 Verdon, C.P., Burton, B.A. and Prior, R.L. (1995) Sample pretreatment with nitrate reductase and glucose-6-phosphphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess Reaction is used to assay for nitrite. Analytical Biochemistry, 224: 502-508.   DOI   ScienceOn
16 Vodovotz, Y. (1996) Modified microassay for serum nitrite and nitrate. Biotechniques, 20: 390-394.
17 Hahn, U.K., Bender, R.C. and Bayne, C.J. (2001) Involvement of nitric oxide in killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata. The Journal of Parasitology, 87: 778-785   DOI
18 Hauton, C., Hall-Spencer, J.M and Moore, P.G. (2001) An experimental study of the ecological impacts of hydraulic bivalve dredging on maerl. ICES Journal of Marine Science, 60: 381-392.
19 Jeffroy, F. and Paillard, C. (2011) Involvement of nitric oxide in the in vitro interaction between Manila clam, Ruditapes philippinarum, hemocytes and the bacterium Vibrio tapetis. Fish & Shellfish Immunology, 31: 1137-1141.   DOI   ScienceOn
20 Kang, Y.S., Kim, Y.M., Park, K.I,, Cho, S.K. Choi, K.S and Cho, M.J. (2006) Analysis of EST and lectin expressions in hemocytes of Manila clams (Ruditapes philippinarum) (Bivalvia: Mollusca) infected with Perkinsus olseni. Developmental and Comparative Immunology, 30: 1119-1131.   DOI   ScienceOn
21 Lacoste, A., Jalabert, F., Malham, S.K., Cueff, A. and Poulet, S.A. (2001a) Stress and Stress-Induced Neuroendocrine Changes Increase the Susceptibility of Juvenile Oysters (Crassostrea gigas) to Vibrio splendidus. Applied and Environmental Microbiology, 67: 2304-2309.   DOI   ScienceOn
22 Kojima, H., Sakurai, K., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., Hirata, Y. and Nagano, T. (1998) Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chemical and Pharmaceutical Bulletin, 46: 373-5   DOI   ScienceOn
23 KOISIS. (2013) http://kosis.kr/
24 Knowles, R.G. and Moncada, S. (1992) Nitric oxide as a signal in blood vessels. Trends In Biochemical Sciences, 17: 399-402.   DOI   ScienceOn
25 Lacoste, A., Malham, S.K., Cueff, A. and Poulet, S.A. (2001b) Stress-induced catecholamine changes in the hemolymph of the oyster Crassostrea gigas. General Comparative Endocrinology, 122: 181-188.   DOI   ScienceOn
26 Lee, S.H., Yang, K.H., You, K.W., Kim, Y.G., and Choi, H.Y. (2005) Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea. Journal of the Oceanological Society of Korea, 10: 100-112.   과학기술학회마을
27 Marin, M.G., Moschino, V., Meneghetti, F. and Da Ros, L. (2005) Effects of mechanical stress in under-sized clams, Tapes philippinarum: a laboratory approach. Aquaculture International, 13: 75-88.   DOI
28 Menaka, K.B., Ramesh, A., Thomas, B. and Kumari, N.S. (2009) Estimation of nitric oxide as an inflammatory maker in periodontitis. Journal of Indian Society of Periodontology, 13: 75-78.   DOI   ScienceOn
29 Moncada, S., Palmer, R.M.J. and Higgs, E.A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological Review, 43: 109-142.
30 Moschino, V., Chicharo, L.M.Z. and Marin, M.G. (2008) Effects of hydraulic dredging on the physiological responses of the target species Chamelea gallina (Mollusca: Bivalvia): laboratory experiments and field surveys. Scientia Marina, 72: 493-501
31 Boscolo, R., Cornello, M. and Giovanardi, O. (2003) Condition index and air survival time to compare three kinds of Manila clam Tapes philippinarum (Adams & Reeve) farming systems. Aquaculture International, 11: 243-254.   DOI   ScienceOn
32 Cirino, G., Distrutti, E. and Wallace, J. (2006) Nitric oxide and inflammation. Inflammation and Allergy-Drugs Targets, 5: 115-119.   DOI
33 Colasanti, M. and Venturini, G. (1998) Nitric oxide in invertebrates. Molecular Neurobiology, 17: 157-174.   DOI   ScienceOn
34 Aktan, F. (2004) iNOS-mediated nitric oxide production and its regulation. Life Sciences, 75: 639-653.   DOI   ScienceOn
35 Bogdan, C. (2001) Nitric oxide and the immune response. Nature Immunology, 2: 907-916.   DOI   ScienceOn
36 Conte, A. and Ottaviani, E. (1995) Nitric oxide synthase activity in molluscan hemocytes. FEBS Letters, 365: 120-124.   DOI   ScienceOn
37 Eich, R.F., Li, T., Lemon, D.D., Doherty, D.H., Curry, S.R., Aitken, J.F., Mathews, A.J., Johnson, K.A., Smith, R. D., Phillips, G.N.Jr and Olson, J.S. (1996) Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry, 35: 6976-6983.   DOI   ScienceOn
38 Franchini, A., Fontanili, P. and Ottaviani, E. (1995) Invertebrate immunocytes: relationship between phagocytosis and nitric oxide production. Comparative Biochemistry and Physiology (B), 110: 403-407.   DOI   ScienceOn
39 Ferreira, T. and Rasband, W.S. (2012) ImageJ User Guide-IJ 1.46r, imagej.nih.gov/ij/docs/guide/
40 Feldman, P.L., Griffith, O.W. and Stuehr, D.J. (1993) The surprising life of nitric oxide. Chemical and Engineering News, 71: 26-38.