Browse > Article
http://dx.doi.org/10.5850/JKSCT.2020.44.2.342

Influences of Wearing Far-infrared Indoor Clothing on Skin Blood Flow, Perceptual and Thermal Responses  

Baek, Yoon Jeong (Research Institute for Human Ecology, Seoul National University)
Seo, Wonji (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University)
Kim, Hyung Chan (Fabric/Dyeing Performance Unit, Hyosung TNC Corporation)
Lee, Joo-Young (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University/Research Institute of Human Ecology, Seoul National University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.44, no.2, 2020 , pp. 342-353 More about this Journal
Abstract
The purpose of this study was to evaluate far-infrared clothing (FIR condition) with non-far-infrared clothing (Control condition) to assess the effects of FIR on thermo-physiological responses. Eight young healthy males (23.0±2.3 yr, 176.5±3.7 cm, and 69.0±4.3 kg) participated in this experimental trial, which consisted of a 20 min rest followed by a 40 min walk (4.0 km·hr-1) and a 20 min recovery at 20℃ with 50%RH. The results showed that finger skin blood flow and mean skin temperature were significantly higher for the FIR condition than the control during exercise and recovery (p<.001). Clothing microclimate temperature of the FIR condition was 0.5℃ higher on the back (p=.001) and 0.4℃ higher on the thigh (p=.015) during recovery. Clothing microclimate relative humidity of the FIR condition was 13% higher on the chest (p=.006) and 19% higher on the back (p<.001) during exercise than control. Subjects felt warmer and more comfortable in the FIR condition than in the control (p<.05). Perceived skin wettedness (%BSA) was less in the FIR condition than in the control (p=.001). These results indicate that ceramic-embedded clothing had significant effects on thermoregulatory responses for light activity in an indoor environment.
Keywords
Far-infrared fabrics; Far-infrared clothing; Ceramic containing clothing; Blood flow rates; Thermoregulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hosono, T., Takashima., Y., Morita, Y., Nishimura, Y., Sugita, Y., Isami, C., ... Suzuki, A. (2010). Effects of a heat- and steamgenerating sheet on relieving symptoms of primary dysmenorrhea in young women. The Journal of Obstetrics and Gynaecology Research, 36(4), 818-824. doi:10.1111/j.1447-0756.2010.01237.x   DOI
2 Hsu, P.-C., Liu, C., Song, A. Y., Zhang, Z., Peng, Y., Xie, J., ... Cui, Y. (2017). A dual-mode textile for human body radiative heating and cooling. Science Advances, 3(11):e1700895. doi: 10.1126/sciadv.1700895
3 Hsu, P.-C., Liu, X., Liu, C., Xie, X., Lee, H. R., Welch, A. J., ... Cui, Y. (2014). Personal thermal management by metallic nanowire-coated textile. Nano Letters, 15(1), 365-371. doi:10.1021/nl5036572   DOI
4 Hu, X., Tian, M., Qu, L., Zhu, S., & Han, G. (2015). Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon, 95, 625-633. doi:10.1016/j.carbon.2015.08.099   DOI
5 Kim, H., Lim, H., & Park, Y. (2009). Environment corresponding package by quantitative mixing system with functional inorganic material and polyolefin resin. Journal of the Koran Society of Dyers and Finishers, 21(1), 1-9. doi:10.5764/TCF.2009.21.1.001
6 Kim, H.-A., & Kim, S.-J. (2010). Far-infrared emission characteristics of germanium included fabrics for emotional garment. Korean Journal of The Science of Emotion & Sensibility, 13(4), 687-692.
7 Kim, J.-y., Park, D.-h., Kim H.-j., Kim, G.-w., Shin, Y.-a., & Kim, C.-s. (2017). The effect of wear of functional clothing included germanium fabrics on the anaerobic exercise capacity and fatigue, oxygen carrying capacity. Biomedical Research, Special Issue, S563-S567.
8 Knight, R. D. (2004). Physics for scientists and engineers: A strategic approach. San Francisco, CA: Addison-Welsey.
9 Davey, M., Eglin, C., House, J., & Tipton, M. (2013). The contribution of blood flow to the skin temperature responses during a cold sensitivity test. European Journal of Applied Physiology, 113(9), 2411-2417. doi:10.1007/s00421-013-2678-8   DOI
10 Conrado, L. A. L., & Munin, E. (2013). Reductions in body measurements promoted by a garment containing ceramic nanoparticles: a 4-month follow-up study. Journal of Cosmetic Dermatology, 12(1), 18-24. doi:10.1111/jocd.12027   DOI
11 DiPasquale, D. M., Buono, M. J. F., & Kolkhorst, F. W. (2001). Effect of sweat gland inactivation on skin temperature and skin blood flow during exercise in the heat. Medicine & Science in Sports & Exercise, 33(5 Supplement 1):S162. doi:10.1097/00005768-200105001-00916   DOI
12 Du Bois, D., & Du Bois, E. F. (1916). A formula to estimate the approximate surface area if height and weight be known. Archives of Internal Medicine, XVII(6_2), 863-871. doi:10.1001/archinte.1916.00080130010002   DOI
13 Dyer, J. (2011). Infrared functional textiles. In N. Pan & G. Sun (Eds.), Functional textiles for improved performance, protection and health (pp. 184-197). Cambridge: Woodhead Publishing Limited.
14 Flouris, A. D., Westwood, D. A., Mekjavic, I. B., & Cheung, S. S. (2008). Effect of body temperature on cold induced vasodilation. European Journal of Applied Physiology, 104(3), 491-499. doi:10.1007/s00421-008-0798-3   DOI
15 Ha, M., Tokura, H., Yanai, Y., Moriyama, T., & Tsuchiya, N. (1999). Combined effects of fabric air permeability and moisture absorption on clothing microclimate and subjective sensation during intermittent exercise at 27 degrees C. Ergonomics, 42(7), 964-979. doi:10.1080/001401399185243   DOI
16 Haase, J. (2005). Standards for protective textiles. In R. A. Scott (Ed.), Textiles for protection (pp. 31-59). Cambridge: Woodhead Publishing Limited.
17 Lee, J.-Y., Nakao, K., & Tochihara, Y. (2011). Validity of perceived skin wettedness mapping to evaluate heat strain. European Journal of Applied Physiology, 111(10), 2581-2591. doi: 10.1007/s00421-011-1882-7   DOI
18 Korea Far Infrared Association. (2019). KFIA-F1-1005 Test method on far infrared emissivity and radiant energy. Seoul: Author.
19 Kubiliene, D., Sankauskaite, A., Abraitiene, A., Krauledas, S., & Barauskas, R. (2016). Investigation of thermal properties of ceramic-containing knitted textile materials. FIBERS & TEXTILES in Eastern Europe, 24(3:117), 63-66. doi:10.5604/12303666.1185481
20 Lai, C.-H., Leung, T.-K., Peng, C.-W., Chang, K.-H., Lai, M.-J., Lai, W.-F., & Chen, S.-C. (2014). Effects of far-infrared irradiation on myofascial neck pain: A randomized, double-blind, placebo-controlled pilot study. The Journal of Alternative and Complementary Medicine, 20(2), 123-129. doi:10.1089/acm.2013.0122   DOI
21 Loturco, I., Abad, C. C .C., Nakamura, F. Y., Ramos, S. P., Kobal, R., Gil, S., ... Tricoli, V. (2016). Effects of far infrared rays emitting clothing on recovery after an intense plyometric exercise bout applied to elite soccer players: a randomized doubleblind placebo-controlled trial. Biology of Sport, 33(3), 277-283. doi:10.5604/20831862.1208479   DOI
22 Lee, J.-Y., Wakabayashi, H., Wijayanto, T., & Tochihara, T. (2010). Differences in rectal temperatures measured at depths of 4-19cm from the anal sphincter during exercise and rest. European Journal of Applied Physiology, 109(1), 73-80. doi:10.1007/s00421-009-1217-0   DOI
23 Leung, T.-K., Chen, C.-H., Lai, C.-H., Lee, C.-M., Chen, C.-C., Yang, J.-C., ... Chao, J. S. (2012). Bone and joint protection ability of ceramic material with biological effects. Chinese Journal of Physiology, 55(1), 47-54. doi:10.4077/CJP.2012.AMM113   DOI
24 Lin, C.-C., Liu, X.-M., Peyton, K., Wang, H., Yang, W.-C., Lin, S.-J., & Durante, W. (2008). Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 739-745. doi:10.1161/ATVBAHA.107.160085   DOI
25 Moon, S.-H., Seo, J.-C., Bai, S.-D., Lee, C.-M., & Kwon, B.-A. (2019). The effects of underwear contained natural mineral composition on dysmenorrhea and perceived stress. Journal of the Korean Society of Wellness, 14(4), 381-392. doi:10.21097/ksw.2019.11.14.4.381   DOI
26 Nadel, E. R., Mitchell, J. W., & Stolwijk, J. A. J. (1971). Control of local and total sweating during exercise transients. International Journal of Biometeorology, 15(2), 201-206. doi:10.1007/BF01803898   DOI
27 Pan, N., & Sun, G. (2011). Functional textiles for improved performance, protection and health. Cambridge: Woodhead Publishing Limited.
28 Tong, J. K., Huang, X., Boriskina, S. V., Loomis, J., Xu, Y., & Chen, G. (2015). Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics, 2(6), 769-778. doi:10.1021/acsphotonics.5b00140   DOI
29 Shin, Y.-L., Kim, N.-G., Park, K.-J., Kim, D.-W., Hong, G.-Y., & Shin, B.-C. (2012). Skin adhesive low-level light therapy for dysmenorrhoea: a randomized, double-blind, placebo-controlled, pilot trial. Archives of Gynecology and Obstetrics, 286(4), 947-952. doi:10.1007/s00404-012-2380-9   DOI
30 Tao, Y., Li, T., Yang, C., Wang, N., Yan, F., & Li, L. (2018). The influence of fiber cross-section on fabric far-infrared properties. Polymers, 10(10):1147. doi:10.3390/polym10101147   DOI
31 Tsai, S.-R., & Hamblin, M. R. (2017). Biological effects and medical applications of infrared radiation. Journal of Photochemistry and Photobiology B: Biology, 170, 197-207. doi:10.1016/j.jphotobiol.2017.04.014   DOI
32 Voeikov, V. L. (2006). Reactive oxygen species (ROS): Pathogens or sources of vital energy? Park 2. Bioenergetic and bioinformational functions of ROS. The Journal of Alternative and Complementary Medicine, 12(3), 265-207. doi:10.1089/acm.2006.12.265   DOI
33 Washington, K., Wason, J., Thein, M. S., Lavery, L. A., Hamblin, M. R., & Gordon, I. L. (2018). Randomized controlled trial comparing the effects of far-infrared emitting ceramic fabric shirts and control polyester shirts on transcutaneous PO2. Journal of Textile Science & Engineering, 8(2):349. doi:10.4172/2165-8064.1000349   DOI
34 Xu, W., Shyr, T., & Yao, M. (2007) Textiles' properties in the infrared irradiation. Textile Research Journal, 77(7), 513-519. doi:10.1177/0040517507080673   DOI
35 York, R. M. B., & Gordon, I. L. (2009). Effect of optically modified polyethylene terephthalate fiber socks on chronic foot pain. BMC Complementary and Alternative Medicine, 9(1): 10. doi:10.1186/1472-6882-9-10   DOI
36 Choi, S. J., Cho, E. H., Jo, H. M., Min, C., Ji, Y. S., Park, M. Y., ... Hwang, S. D. (2016). Clinical utility of far-infrared therapy for improvement of vascular access blood flow and pain control in hemodialysis patients. Kidney Research and Clinical Practice, 35(1), 35-41. doi:10.1016/j.krcp.2015.12.001   DOI
37 Ziaei, M., & Ghane, M. (2013). Thermal insulation property of spacer fabrics integrated by ceramic powder impregnated fabrics. Journal of Industrial Textiles, 43(1), 20-33. doi:10.1177/1528083712446384   DOI
38 Bahng, G.-W., & Lee, J. D. (2014). Development of heat-generating polyester fiber harnessing catalytic ceramic powder combined with heat-generating super microorganisms. Textiles Research Journal, 84(11), 1220-1230. doi:10.1177/0040517513503732   DOI
39 Chen, Z., Wang, J., Li, J., Zhu, Y., & Ge, M. (2017). Negative air ion release and far infrared emission properties of polyethylene terephthalate/germanium composite fiber. Journal of Engineered Fibers and Fabrics, 12(1), 59-65. doi:10.1177/155892501701200107
40 Chiu, H.-W., Chen, C.-H., Chang, J.-N., Chen, C.-H., & Hsu, Y.-H. (2016). Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. Journal of Molecular Medicine, 94(7), 809-819. doi:10.1007/s00109-016-1389-0   DOI
41 Chung, J., & Lee, S. (2014). Development of nanofibrous membranes with far-infrared radiation and their antimicrobial properties. Fibers and Polymers, 15(6), 1153-1159. doi:10.1007/s12221-014-1153-4   DOI
42 Conrado, L. A. L., & Munin, E. (2011). Reduction in body measurements after use of a garment made with synthetic fibers embedded with ceramic nanoparticles. Journal of Cosmetic Dermatology, 10(1), 30-35. doi:10.1111/j.1473-2165.2010.00537.x   DOI