Browse > Article
http://dx.doi.org/10.5850/JKSCT.2011.35.12.1425

Toward Developing a Mobile Channel Extension Model: Roles of Compatibility, Subjective Norm, and Media Influences  

Lee, Hyun-Hwa (Dept. of Fashion Design & Textiles, Inha University)
Kim, Ji-Hyun (Dept. of Apparel, Housing, & Resource Management, Virginia Polytechnic Institute and State University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.35, no.12, 2011 , pp. 1425-1439 More about this Journal
Abstract
The present research developed and empirically examined a theoretical model called a Mobile Channel Extension Model for consumer behavior toward mobile commerce. We proposed three antecedents: compatibility of, subjective norm regarding, and media influence regarding mobile use for communication purposes that influence the attitude toward the subjective norm and media influences of mobile use for shopping. These in turn positively influenced the consume's intention to use mobile devices for shopping. A Structural equation modeling analysis, using the data collected from a national online survey of 524 U. S. multichannel shoppers, confirmed the proposed model. The theoretical implications of these effects were discussed and managerial suggestions were made for both academicians and practitioners.
Keywords
Mobile shopping; Compatibility; Subjective norm; Media influences;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shankar, V., & Winer, R. S. (2005). Interactive marketing goes multichannel. Journal of Interactive Marketing, 19(2), 2-3.   DOI   ScienceOn
2 Shao, Y. P. (1999). Expert systems diffusion in British banking: Diffusion models and media factor. Information and Management, 35(1), 1-8.   DOI   ScienceOn
3 Skumanich, S. A., & Kintsfather, D. P. (1998). Individual media dependency relations within television shopping programming: A causal model reviewed and revised. Communication Research, 25(2), 200-219.   DOI   ScienceOn
4 Tsang, M. M., Ho, S. C., & Liang, T. P. (2004). Consumer attitudes toward mobile advertising: An empirical study. International Journal of Electronic Commerce, 8(3), 65-78.
5 Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.   DOI   ScienceOn
6 Vijayasarathy, L. R. (2004). Predictong consumer intentions to use on-line shopping: The case for and augmented technology acceptance model. Information and Management, 41(6), 747-762.
7 Vollmer, C. (2008). Always on: Advertising, marketing and media in an era of consumer control. New York: McGraw-Hill.
8 Wakefield, K. L., & Baker, J. (1998). Excitement at the mall: Determinants and effects on shopping response. Journal of Retailing, 74(4), 515-539.   DOI   ScienceOn
9 Wei, R., Xiaoming, H., & Pan, J. (2010). Examining user behavioral response to SMS ads: Implications for the evolution of the mobile phone as a bona-fide medium. Telematics and Informations, 27(1), 32-41.   DOI   ScienceOn
10 Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information and Management, 42(5), 719-729.   DOI   ScienceOn
11 Lu, J., Yu, C. S., Liu, C., & Yao, J. E. (2003). Technology acceptance model for wireless Internet. Internet Research: Electronic Networking Applications and Policy, 13(3), 206-222.   DOI   ScienceOn
12 Mallata, N., Rossia, M., Tuunainen, V. K., & Oorni, A. (2009). The impact of use context on mobile services acceptance: The case of mobile ticketing. Information and Managementm, 46(3), 190-195.   DOI   ScienceOn
13 Moorman, J. (2009). Industry surveys: Telecommunications, wireless. New York: Standard & Poor's Industry surveys.
14 Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005b). Explaining intention to use mobile chat services: Moderating effects of gender. Journal of Consumer Marketing, 22(5), 247-256.   DOI   ScienceOn
15 Mort, G. S., & Drennan, J. (2002). Mobile digital technology: Emerging issues for marketing. Journal of Database Marketing, 10(1), 9-23.   DOI   ScienceOn
16 Murphy, S. (2007). Getting iReady. Chain Store Age, 83(8), 84.
17 Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005a). Intentions to use mobile services: Antecedents and cross-service comparisons. Journal of the Academy of Marketing Science, 33(3), 330-346.   DOI   ScienceOn
18 Pentina, I., & Hasty, R. W. (2009). Effects of multichannel coordination and e-commerce outsourcing on online retail performance. Journal of Marketing Channels, 16(4), 359-374.   DOI   ScienceOn
19 Premkumar, G., Ramamurthy, K., & Liu, H. N. (2008). Internetmessaging: An examination of the impact of attitudinal, normative, and control belief systems. Information and Management, 45(7), 451-457.   DOI   ScienceOn
20 Rangaswamy, A., & Van Bruggen, G. H. (2005). Opportunities and challenges in multichannel marketing: An in-troduction to the special issue. Journal of Interactive Marketing, 19(2), 5-11.   DOI   ScienceOn
21 Rogers, E. M. (1995). Diffusion of Innovations (4th ed.). NewYork, NY: Free Press.
22 Hung, S. Y., Chang, C. M., & Yu, T. J. (2006). Determinantsof user acceptance of the e-government services: The case of online tax filing and payment system. Government Information Quarterly, 23(1), 97-122.   DOI   ScienceOn
23 IANS. (2010, February 16). Five billion people to use cell phones in 2010: UN. Thaindian News. Retrieved April 1, 2011, from http://www.thaindian.com/newsportal/sci-tech/five-billion-people-to-use-cell-phones-in-2010-un_100320649.html
24 Kulviwat, S., Bruner, G. C. II, Kumar, A., Nasco, S. A., & Clark, T. (2007). Toward a unified theory of consumer acceptance of technology. Psychology and Marketing, 24(12), 1067-1092.
25 Kim, J. H., Ma, Y. J., & Park, J. H. (2009). Are U. S. consumers ready to adopt mobile technology for fashion goods? An integrated theoretical approach. Journal of Fashion Marketing and Management, 13(2), 215-230.   DOI   ScienceOn
26 Kim, J. H., & Park, J. H. (2005). A consumer shopping channel extension model: Attitude shift toward the online retailer. Journal of Fashion Marketing and Management,9(1), 106-121.   DOI   ScienceOn
27 Ko, E. J., Kim, E. Y., & Lee, E. K. (2009). Modeling consumer adoption of mobile shopping for fashion products in Korea. Psychology and Marketing, 26(7), 669-687.   DOI   ScienceOn
28 Lee, H. H., & Kim, J. H. (2010). Investigating dimensionality of multichannel retailer's cross-channel integration practices and effectiveness: Shopping orientation and loyalty intention. Journal of Marketing Channels, 17(4), 281-312.   DOI   ScienceOn
29 Lee, H. H., & Lee, S. E. (2007). Mobile commerce: An analysis of key success factors. Journal of Shopping Center Research, 14(2), 29-62.
30 Lee, H. H., & Lee, S. E. (2010). Internet vs. mobile services: Comparisons of gender and ethnicity. Journal of Research in Interactive Marketing, 4(4), 346-375.   DOI   ScienceOn
31 Li, W., & McQueen, R. J. (2008). Barriers to mobile commerce adoption: An analysis framework for a country-level perspective. International Journal of Mobile Communication, 6(2), 231-257.   DOI   ScienceOn
32 Chen, L. D., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: An extended technology acceptance perspective. Information and Management, 39(8), 705-719.   DOI   ScienceOn
33 Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychology Bulletin, 52, 281-302.   DOI   ScienceOn
34 Chen, J. V., Yen, D. C., & Chen, K. (2009). The acceptance and diffusion of the innovative smart phone use: A case study of a delivery service company in logistics. Information and Management, 46(4), 241-248.   DOI   ScienceOn
35 Cheong, J. H., & Park, M. C. (2005). Mobile internet acceptance in Korea. Internet Research: Electronic Networking Applications and Policy, 15(2), 125-140.   DOI   ScienceOn
36 Constantiou, I. D., Damsgaard, J., & Knutsen, L. (2006). Exploring perceptions and use of mobile services: User differences in an advancing market. International Journal of Mobile Communications, 4(3), 231-247.   DOI
37 Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.   DOI   ScienceOn
38 Dillman, D. A. (2007). Mail and internet surveys: The tailored design method (2nd ed.). New York: John Wiley and Sons.
39 Frattaroli, M. (2009). Compete blog: Cross-channel retail-what are online customers doing today? RetailWire. Retrieved April 3, 2010, from http://www.retailwire.com/Discussions/Sngl_Discussion.cfm/13922
40 Fornell, C., & Larcker D. F. (1981). Evaluating structural equation models with unobservable variables and measurement models. Journal of Marketing Research, 18(1),39-50.   DOI   ScienceOn
41 Grant, A. E., Guthrie, K. K., & Ball-Rokeach, S. J. (1991). Television shopping: A media system dependency perspective. Communication Research, 18(6), 773-798.   DOI
42 Hair, J. F., Tatham, R. L., Anderson R. E., & Black, W. (1998). Multivariate data analysis. Upper Saddle River, NJ: Prentice-Hall
43 Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.   DOI   ScienceOn
44 Toner, M. M., Sawka, M. N., Foley, M. E., & Pandolf, K. B. (1986). Effects of body mass and morphology on thermal responses in water. Journal of Applied Physiology, 60(2), 521-525.   DOI
45 Ajzen, I., & Fishbein, M. (1980).Understanding attitudes and predicting social behavior. Englewood Cliff, NJ: Prentice-Hall.
46 Armstrong, J. S., & Overton, T. S. (1977). Estimation nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396-402.   DOI   ScienceOn
47 Balabanis, G., & Reynolds, N. L. (2001). Consumer attitudes towards multichannel retailer's websites: The role of involvement, brand attitude, internet knowledge and visit duration. Journal of Business Strategies, 18(2), 105-129.
48 Ball-Rokeach, S. J., & DeFleur, M. L. (1976). A dependency model of mass media effects. Communication Research, 3(1), 3-21.   DOI
49 Binge, E., Ruiz, C., & Sanz, S. (2007). Key drivers of mobile commerce adoption: An exploratory study of Spanish mobile users. Journal of Theoretical and Applied Electronic Commerce Research, 2(2), 48-60.
50 Bhattacherjee, A. (2000). Acceptance of e-commerce services: The case of electronic brokerages. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systemsand Humans, 30(4), 411-420.   DOI   ScienceOn
51 Bruner II, G, C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of Business Research, 58(5), 553-558.   DOI   ScienceOn