Browse > Article
http://dx.doi.org/10.5850/JKSCT.2008.32.6.911

Effects of Triton X-100 and Calcium Chloride on the Porcine Pancreas Lipase Treatment of PET Fabrics  

Kim, Hye-Rim (Dept. Clothing & Textiles, Sookmyung Women's University)
Song, Wha-Soon (Dept. Clothing & Textiles, Sookmyung Women's University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.32, no.6, 2008 , pp. 911-917 More about this Journal
Abstract
In this study, we reported the effect of porcine pancreas lipase treatment in the presence of a calcium chloride and Triton X-100 on moisture regain and wettability of PET fabrics. The moisture regain of PET fabrics in the presence of 0.5% surfactant showed a 1.5-fold decrease, compared to the absence of it. Triton X-100 acted as an inhibitor to porcine pancreas lipase hydrolytic activity. The moisture regain and wettability of porcine pancreas lipase treated PET fabrics improved when more than 10mM of calcium chloride was added to the treatment solution. Porcine pancreas lipase treatment caused voids and cracks on PET fabrics.
Keywords
Porcine pancreas lipase; Triton X-100; Calcium chloride; PET fabric; Moisture regain;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Beilen, J. B. V. & Li, Z. (2002). Enzyme technology: An overview. Current opinion in biotechnology, 13(4), 338-344   DOI   ScienceOn
2 Hsieh, Y. L. & Cram, L. A., (1998). Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Textile Res. J., 68(5), 311-319   DOI
3 Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current opinion in biotechnology, 13(4), 345-351   DOI   ScienceOn
4 Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627-662   DOI   ScienceOn
5 Walter, T., Augusta, J., Muller, R. J., Widdecke, H., & Klein, J. (1995). Enzymatic degradation of a model polyester by lipase from Rhizopus delemar. Enzyme and Microb. Technol., 17, 218-224   DOI   ScienceOn
6 Cavaco-Paulo, A. & Gubitz, G. M. (2003). Textile processing with enzymes. New York: CRC press
7 Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme Microb. Technol., 39(2), 235-251   DOI   ScienceOn
8 Kim, C. H. (2003). Effect of nonionic surfactant solution on wetting and absorbency of PET fabric. Journal of the Korean Society of Clothing and Textiles, 27(9/10), 1153-1159
9 Chaudhary, A. K., Beckman, E. J., & Russell, A. J. (1998). Enzymes fro polyester synthesis. ACS Symposium Series, 684, 18-57
10 Decker, L. A. (1997). Worthington enzyme manual: Enzymes. New Jersey: Worthington
11 Kim, H. R. & Song, W. S. (2006). Lipase treatment of polyester fabrics. Fibers and Polymers, 7(4), 339-343   과학기술학회마을   DOI   ScienceOn
12 Vertommen, M. A. M. E., Nierstrasz, V. A., Van der Veer, M., & Warmoeskerken, M. M. C. G. (2005). Enzymatic surface modification of poly(ethylene terephthalate). J. Biotechnol., 120, 376-386   DOI   ScienceOn
13 Chaya, E. & Kitano, M. (1999). Possibility of modifying polyester fibers using lipases. SEN' IGAKKASHI, 55(5), 150-154   DOI
14 Blow, D. (1991). Lipases reach the surface. Nature, 351(6), 444-445   DOI   ScienceOn
15 Guebitz, G. M. & Cavaco-Paulo, A. (2007). Enymes go big: Surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol., 26(1), 32-38   DOI   ScienceOn
16 Yoon, M. Y., Kellis, J., & Poulose, A. J. (2002). Enzymatic modification of polyester. AATCC Review, 2, 33-36