Browse > Article
http://dx.doi.org/10.14478/ace.2022.1028

Improving the DIMP Sorption Capacity Durability of Zirconium Based Metal-Organic Frameworks Coated with Polydimethylsiloxane at High Humidity  

Jang, Wonhyeong (Nuclear & WMD Protection Research Center, Korea Military Academy)
Jeong, Sangjo (Nuclear & WMD Protection Research Center, Korea Military Academy)
Publication Information
Applied Chemistry for Engineering / v.33, no.3, 2022 , pp. 296-301 More about this Journal
Abstract
Due to the fact that zirconium based metal-organic frameworks (Zr-MOFs), such as UiO-66, have a large specific surface area and excellent selective adsorption capacity, Zr-MOFs are gaining attention as materials that can provide protection from the attack of chemical warfare agents in battleground. However, most of the metal-organic frameworks have an issue of selective adsorption capacity degraded by water molecules when exposed to the atmosphere, because of the weak metal-organic ligand bonds and the presence of voids. Therefore, polydimethylsiloxane (PDMS), a representative hydrophobic polymer material, was coated on the surface of UiO-66 to enhance the sustainability of the diisopropyl methylphosphonate (DIMP) sorption capacity in the battleground condition. Through the analysis of surface structure and organic functional group distribution of PDMS coated UiO-66, silicon was confirmed to be evenly coated. The contact angle increased by over 30° for the PDMS coated UiO-66, indicating that the hydrophobicity was improved. In addition, both the UiO-66 and PDMS coated UiO-66 were used as adsorbents for DIMP, a similar chemical warfare agent, to investigate the durability of adsorption capacity in a high humidity environment. The PDMS coated UiO-66 showed higher durability of adsorption capacity for 20 days than that of pristine UiO-66.
Keywords
Metal-organic frameworks; PDMS; Chemical warfare agents; Adsorption; Humidity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Chen, K. Shen, Y. Tan, and Y. Li, Multishell hollow metal/nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties, ACS Nano, 13, 7800-7810 (2019).   DOI
2 Y. Liu, S. Moon, J. T. Hupp, and O. K. Farha, Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants, ACS Nano, 9, 12358-12364 (2015).   DOI
3 J. M. Palomba, S. P. Harvey, M. Kalaj, B. R. Pimentel, J. B. DeCoste, G. W. Peterson, and S. M. Cohen, High-throughput screening of MOFs for breakdown of V-series nerve agents, ACS Appl. Mater. Interfaces, 12, 14672-14677 (2020).   DOI
4 C. Yang, U. Kaipa, Q. Z. Mather, X. Wang, V. Nesterov, A. F. Venero, and M. A. Omary, Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage, J. Am. Chem. Soc., 133, 18094-18097 (2011).   DOI
5 Y. Cho, E. Park, and Y. Kim, Removal of oil by gelation using hydrophobic silica nanoparticles, J. Ind. Eng. Chem., 20, 1231-1235 (2014).   DOI
6 S. Kim, M. Seo, and S. Uhm, Study on the optimization of superhydrophobic coating for the durability of gas diffusion layer in alkaline fuel cells, Appl. Chem. Eng., 28, 691-695 (2017).   DOI
7 R. Xu, Y. Kang, W. Zhang, X. Zhang, and B. Pan, Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport, Angew. Chem. Int. Ed., 61, e202115443 (2022).
8 W. Jang, H. Kim, and S. Jeong, The characteristics of diisopropyl methylphosphonate adsorption on zirconium-based metal organic frameworks manufactured by using different acids as modulators, Appl. Chem. Eng., 32, 524-531 (2021).   DOI
9 S. Han, K. Kim, J. Kim, S. Uhm, and Y. Kim, Hydrophobic polydimethylsiloxane thin films prepared by chemical vapor deposition: Application in water purification, Appl. Chem. Eng., 28, 1-7 (2017).   DOI
10 J. Kim, R. Balderas-Xicohtencatl, L. Zhang, S. Kang, M. Hirscher, H. Oh, and H. Moon, Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation, J. Am. Chem. Soc., 139, 15135-15141 (2017).   DOI
11 V. Singh, T. Guo, H. Xu, L. Wu, J. Gu, C. Wu, R. Gref, and J. Zhang, Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding, Chem. Commun., 53, 9246-9249 (2017).   DOI
12 M. Kalaj, J. M. Palomba, K. C. Bentz, and S. M. Cohen, Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation, Chem. Commun., 55, 5367-5370 (2019).   DOI
13 N. Tian, Y. Gao, J. Wu, S. Luo, and W. Dai, Water-resistant HKUST-1 functionalized with polydimethylsiloxane for efficient rubidium ion capture, New J. Chem., 43, 15539-15547 (2019).   DOI
14 Y. Kye, K. Jeong, and D. Kim, Recent trend in catalysis for degradation of toxic organophosphorus compounds, Appl. Chem. Eng., 30, 513-522 (2019).   DOI
15 X. Gong, K. Gnanasekaran, Z. Chen, L. Robison, M. C. Wasson, K. C. Bentz, S. M. Cohen, O. K. Farha, and N. C. Gianneschi, Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy, J. Am. Chem. Soc., 142, 17224-17235 (2020).   DOI
16 S. Yang, S. Nam, T. Kim, J. Im, H. Jung, J. Kang, S. Wi, B. Park, and C. Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework, J. Am. Chem. Soc., 135, 7394-7397 (2013).   DOI
17 S. Han, K. Kim, J. Kim, S. Uhm, and Y. Kim, Hydrophobic polydimethylsiloxane thin films prepared by chemical vapor deposition: Application in water purification, Appl. Chem. Eng., 28, 1-7 (2017).   DOI
18 H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999).   DOI
19 H. Kim, J. Seo, H. Kim, S. Jeong, K. Baek, J. Kim, S. Min, S. Kim, and K. Jeong, Decomposition of the simulant 2-chloroethyl ethyl sulfide blister agent under ambient conditions using metal-organic frameworks, ACS Appl. Mater. Interfaces, 13, 3782-3792 (2021).   DOI
20 J. E. Mondloch, M. J. Katz, W. C. Isley, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, and O. K. Farha, Destruction of chemical warfare agents using metal-organic frameworks, Nat. Mater., 14, 512-516 (2015).   DOI
21 X. Zhu, B. Li, J. Yang, Y. Li, W. Zhao, J. Shi, and J. Gu, Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67, ACS Appl. Mater. Interfaces, 7, 223-231 (2015).   DOI
22 M. Kalaj, M. R. Momeni, K. C. Bentz, K. S. Barcus, J. M. Palomba, F. Paesani, and S. M. Cohen, Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation, Chem. Commun., 55, 3481-3484 (2019).   DOI
23 E. Park, J. Sim, M. Jeong, H. Seo, and Y. Kim, Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles, RSC Adv., 3, 12571-12576 (2013).   DOI
24 D. Song, J. Bae, H. Ji, M. Kim, Y. Bae, K. Park, D. Moon, and N. Jeong, Coordinative reduction of metal nodes enhances the hydrolytic stability of a paddlewheel metal-organic framework, J. Am. Chem. Soc., 141, 7853-7864 (2019).   DOI
25 T. Q. N. Tran, G. Das, and H. Yoon, Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection, Sens. Actuators B Chem., 243, 78-83 (2017).   DOI
26 X. Zhang, X. Lv, X. Shi, Y. Yang, and Y. Yang, Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air, J. Colloid Interface Sci., 539, 152-160 (2019).   DOI
27 J. M. Taylor, R. Vaidhyanathan, S. S. Iremonger, and G. K. H. Shimizu, Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers, J. Am. Chem. Soc., 134, 14338-14340 (2012).   DOI
28 W. Zhang, Y. Hu, J. Ge, H.-L. Jiang, and S.-H. Yu, A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity, J. Am. Chem. Soc., 136, 16978-16981 (2014).   DOI
29 J. Kim, H. Hwang, D. Kang, and H. Kang, Physical characteristics of silicone modified epoxy as a undercoating materials, Polymer (Korea), 38, 371-377 (2014).   DOI
30 M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun., 49, 9449-9451 (2013).   DOI
31 E. Park, B. Kim, D. Park, S. Han, D. Kim, W. Yun, and Y. Kim, Fabrication of superhydrophobic thin films on various substrates using SiO2 nanoparticles coated with polydimethylsiloxane: towards the development of shielding layers for gas sensors, RSC Adv., 5, 40595-40602 (2015).   DOI
32 P. Kumar, K. Vellingiri, K. Kim, R. J. C. Brown, and M. J. Manos, Modern progress in metal-organic frameworks and their composites for diverse applications, Microporous Mesoporous Mater., 253, 251-265 (2017).   DOI
33 X. Gao, R. Cui, G. Ji, and Z. Liu, Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy, Nanoscale, 10, 6205-6211 (2018).   DOI
34 M. Ding and H. Jiang, Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization, CCS Chem., 2, 2740-2748 (2020).
35 J. Lee, J. Kim, H. Kim, Y. Bae, K. Lee, and H. Cho, Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices, J. Micromech. Microeng., 23, 035007 (2013).   DOI