Browse > Article
http://dx.doi.org/10.14478/ace.2022.1004

Development of Ruthenium/TEMPO/Nitrate Catalyst System for Efficient Oxidation of Isosorbide  

Irshad, Mobina (Department of Chemical Engineering, Kangwon National University)
Yu, Jung-Ah (Department of Chemical Engineering, Kangwon National University)
Oh, Youngtak (Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST))
Kim, Jung Won (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.1, 2022 , pp. 103-108 More about this Journal
Abstract
This research work reports the development of a Ruthenium/2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)/nitrate catalyst system for the highly selective transformation of isosorbide (1,4:3,6-dianhydro-D-glucitol) to isosorbide-diketone (2,6-dioxabicyclo (3,3,0)octan-4,8-one). Isosorbide is a critical platform molecule for future manufacturing processes. TEMPO has been utilized to convert alcohols to carbonyl compounds for a long time. The optimal chemical reaction condition was found to be when using isosorbide (0.5 mmol) with supported Ru (10 mol%), TEMPO (5 mol%), and sodium nitrate (0.03 mmol) in the presence of acetic acid (3 ml) as a solvent at 50 ℃ and 1 atm oxygen pressure. This catalyst system demonstrated good selectivity (> 97%) and yield (87%) with respect to the desired product, in addition to a putative catalytic double oxidation mechanism.
Keywords
Ruthenium/TEMPO/nitrate; Isosorbide; Isosorbide-diketone; Double oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Dijksman, A. Marino-Gonza'lez, A. M. Payeras, I. Arends, and R. A. Sheldon, Efficeint and selective aerobic oxidation of alcohols into aldehydes and ketones using Ruthenium/TEMPO as the catalytic system, J. Am. Chem. Soc., 123, 6826-6833 (2001).   DOI
2 F. Jacquet, R. Audinos, M. Delmas, and A. Gaset, Analytical techniques suitable for the study of the oxidation of a biomass issued substrate: 4,8-dihydroxy-2,6-dioxabicyclo [3.3.0] octane (IR, 4S, 5R, 8R), Biomass, 6, 193-209 (1985).   DOI
3 A. Fawzy, N. E. Guesmi, I. Althagafi, and B. H. Asghar, A study of the kinetics and mechanism of chromic acid oxidation of isosorbide, a chiral biomass-derived substrate, in aqueous perchlorate solution, Transit. Met. Chem., 42, 229-236 (2017).   DOI
4 K. Gao, J. Xin, D. Yan, H. Dong, Q. Zhou, X. Lu, and S. Zhang, Direct conversion of cellulose to sorbitol via an enhanced pretreatment with ionic liquids, J. Chem. Technol. Biotechnol., 93, 2617-2624 (2018).   DOI
5 M. Rose and R. Palkovits, Isosorbide as a renewable platform chemical for versatile applications-Quo Vadis?, ChemSusChem, 5, 167-176 (2012).   DOI
6 M. Selva, A. Perosa, D. R. Padron, and R. Luque, Applications of dimethyl carbonate for the chemical upgrading of biosourced platform chemicals, ACS Sustainable Chem. Eng., 7, 6471-6479 (2019).   DOI
7 F. A. Kucherov, L. V. Romashov, K. I. Galkin, and V. P. Ananikov, Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks, ACS Sustainable Chem. Eng., 6, 8064-8092 (2018).   DOI
8 P. Villo, L. Matt, L. Toom, I. Liblikas, T. Pehk, and L. Vares, Hydroformylation of olefinic derivatives of isosorbide and isomannide, J. Org. Chem., 81, 7510-7517 (2016).   DOI
9 D. J. Saxon, A. M. Luke, H. Sajjad, W. B. Tolman, and T. M. Reineke, Next-generation polymers: isosorbide as a renewable alternative, Prog. Polym. Sci., 101, 101196-101210 (2020).   DOI
10 Y. Zhu, C. Romain, and C. K. Williams, Sustainable polymers from renewable resources, Nature, 540, 1600-1636 (2016).
11 R. C. Hockett, H. G. Fletcher, E. L. Sheffield, and R. M. Goepp, Hexitol Anhydrides. The structure of isosorbide, a crystalline dianhydrosorbitol, J. Am. Chem. Soc., 68, 927-930 (1946).   DOI
12 H. Zia, J. K. H. Ma, J. P. O'Donnell, and L. A. Luzzi, Cosolvency of dimethyl isosorbide for steroid solubility, Pharm. Res., 8, 502-504 (1991).   DOI
13 F. K. Bell, C. J. Carr, J. C. Krantz, Jr., Sugar Alcohols. XXI. A study of the effect of the anhydrides of sorbitol on the dissociation constant of boric acid, J. Phys. Chem., 44, 862-865 (1940).   DOI
14 C. Dussenne, T. Delaunay, V. Wiatz, H. Wyart, I. Suisse, and M. Sauthier, Synthesis of isosorbide: an overview of challenging reactions, Green Chem., 19, 5332-5344 (2017).   DOI
15 O. N. V. Buu, A. Aupoix, and G. Vo-Thanh, Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels-Alder reaction, Tetrahedron, 65, 2260-2265 (2009).   DOI
16 J. Gross, K. Tauber, M. Fuchs, N. G. Schmidt, A. Rajagopalan, K. Faber, W. M. F. Fabian, J. Pfeffer, T. Haas, and W. Kroutil, Aerobic oxidation of isosorbide and isomannide employing TEMPO/laccase, Green Chem., 16, 2117-2121 (2014).   DOI
17 U. Dingerdissen, J. Pfeffer, T. Tacke, T. Haas, H. Schmidt, M. Volland, M. Rimbach, C. Lettmann, R. Sheldon, and M. Janssen, Method for producing 2,6-dioxabicyclo-(3.3.0)-octane-4,8-dione, US Patent 8,378,127B2 (2013).
18 P. Stoss and R. Hemmer, 1,4:3,6-Dianhydrohexitols, Adv. Carbohydr. Chem. Biochem., 49, 93-173 (1991).   DOI
19 F. Arico, Isosorbide as biobased platform chemical: recent advances, Curr. Opin. Green Sustain. Chem., 21, 82-88 (2020).   DOI
20 M. V. N. D. Souza, TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) an important reagent in alcohol oxidation and its application in synthesis of natural products, Mini-Reviews in Org. Chem., 3, 155-165 (2006).   DOI
21 I. Delidovich, P. J. C. Hausoul, L. Deng, R. Pfutzenreuter, M. Rose, and R. Palkovits, Alternative monomers based on lignocellulose and their use for polymer production, Chem Rev., 116, 1540-1599 (2016).   DOI
22 R. V. Engel, Heterogeneously Catalysed Amination and Isomerisation of Isohexides, PhD Dissertation, RWTH Aachen University, Aachen, Germany (2016).
23 G. Fleche and M. Huchette, Isosorbide. Preparation, properties and chemistry, Starch, 38, 26-30 (1986).   DOI
24 E. M. F. Muri, B. A. Abrahim, T. G. Barros, J. S. Williamson, and O. A. C. Antunes, Isomannide and Derivatives. Chemical and Pharmaceutical Applications, 1st ed., 75-83, Bentham Science Publishers, Sharjah, United Arab Emirates (2010).
25 F. Jacquet, C. Granado, L. Rigal, and A. Gaset, The catalytic oxidation of 4,8-dihydroxy-2,6-dioxabicyclo [3.3.0] octane (IR, 4S, 5R, 8R) on platinum in the presence of oxygen: a study of the influence of the major parameters, Appl. Catal., 18, 157-172 (1985).   DOI
26 J. Xi, Y. Zhang, D. Ding, Q. Xia, J. Wang, X. Liu, G. Lu, and Y. Wang, Catalytic production of isosorbide from cellulose over mesoporous niobium phosphate-based heterogeneous catalysts via a sequential process, Appl. Catal. A Gen., 469, 108-115 (2014).   DOI