Browse > Article
http://dx.doi.org/10.14478/ace.2021.1027

Preparation and Release Properties of Acetaminophen Imprinted Functional Starch based Biomaterials for Transdermal Drug Delivery  

Kim, Han-Seong (Department of Biomolecular and Chemical Engineering, Chonnam National University)
Kim, Kyeong-Jung (Department of Biomolecular and Chemical Engineering, Chonnam National University)
Lee, Si-Yeon (Department of Biomolecular and Chemical Engineering, Chonnam National University)
Cho, Eun-Bi (Department of Biomolecular and Chemical Engineering, Chonnam National University)
Kang, Hyun-Wook (Department of Mechanical Engineering, Chonnam National University)
Yoon, Soon-Do (Department of Biomolecular and Chemical Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 299-304 More about this Journal
Abstract
This study focuses on the preparation of acetaminophen (AP) imprinted functional biomaterials for a transdermal drug delivery using mung bean starch (MBS), polyvinyl alcohol (PVA), sodium benzoate (S) as a crosslinking agent, glycerol (GL) as a plasticizer, and melanin (MEL) as a photothermal agent. The prepared AP imprinted biomaterials were characterized using FE-SEM and their physical properties were evaluated. The photothermal effect and AP release property for functional biomaterials were examined with the irradiation of near infrared (NIR) laser (1.5 W/cm2). When the NIR laser was irradiated on functional biomaterials with/without the addition of MEL, the temperature of MEL added biomaterial increased from 25 ℃ to 41 ℃, whereas the biomaterial without MEL increased from 25 ℃ to 28 ℃. Results indicate that there is the photothermal effect of prepared biomaterial with the addition of MEL. Based on the results, AP release properties were evaluated using standard buffer solutions and artificial skin. It was found that AP release rates of MEL added AP loaded biomaterials were 1.2 times faster than those of MEL non-added AP loaded biomaterials when irradiating with NIR laser. We envision that the developed functional biomaterials can be utilized for an acute pain-killing treatment.
Keywords
Transdermal drug delivery; Melanin; Photothermal effect; Acetaminophen; Release properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. S. Kim, K. J. Kim, M. W. Lee, S. Y. Lee, Y. H. Yun, W. G. Shim, and S. D. Yoon, Preparation and release properties of arbutin imprinted inulin/polyvinyl alcohol biomaterials, Int. J. Biol. Macromol., 161, 763-770 (2020).   DOI
2 M. Azmana, S. Mahmood, A. R. Hilles, U. K. Mandal, K. A. S. Al-Japairai, and S. Raman, Transdermal drug delivery system through polymeric microneedle: A recent update, J. Drug Deliv. Sci. Technol., 101877 (2020).
3 X. Zhou, Y. Hao, L. Yuan, S. Pradhan, K. Shrestha, O. Pradhan, H. Liu, and W. Li, Nano-formulations for transdermal drug delivery: A review, Chin. Chem. Lett., 29(12), 1713-1724 (2018).   DOI
4 Y. Li and S. M. Chen, The electrochemical properties of acetaminophen on bare glassy carbon electrode, Int. J. Electrochem. Sci., 7(3), 2175-2187 (2012).
5 S. Abid, T. Hussain, A. Nazir, A. Zahir, and N. Khenoussi, Acetaminophen loaded nanofibers as a potential contact layer for pain management in Burn wounds, Mater. Res. Express, 5(8), 085017 (2018).   DOI
6 Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, and L. Lu, Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy, Adv. Mater., 25(9), 1353-1359 (2013).   DOI
7 S. Roy and J. W. Rhim, Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles, Colloid Surf. B-Biointerfaces, 176, 317-324 (2019).   DOI
8 H. S. Kim, Y. H. Yun, W. G. Shim, and S. D. Yoon, Preparation and evaluation of functional allopurinol imprinted starch based biomaterials for transdermal drug delivery, Int. J. Biol. Macromol., 175, 217-228 (2021).   DOI
9 E. B. Lim, T. A. Vy, and S. W. Lee, Comparative release kinetics of small drugs (ibuprofen and acetaminophen) from multifunctional mesoporous silica nanoparticles, J. Mater. Chem. B, 8(10), 2096-2106 (2020).   DOI
10 S. Sajjan, G. Kulkarni, V. Yaligara, K. Lee, and T. B. Karegoudar, Purification and physiochemical characterization of melanin pigment from Klebsiella sp. GSK, J. Microbiol. Biotechnol., 20(11), 1513-1520 (2010).   DOI
11 J. Stainsack, A. S. Mangrich, C. M. Maia, V. G. Machado, J. C. dos Santos, and S. Nakagaki, Spectroscopic investigation of hard and soft metal binding sites in synthetic melanin, Inorg. Chim. Acta, 356, 243-248 (2003).   DOI
12 A. S. El-Shahawy, S. M. Ahmed, and N. K. Sayed, INDO/SCF-CI calculations and structural spectroscopic studies of some complexes of 4-hydroxyacetanilide, Spectrochim. Acta A-Mol. Biomol. Spectrosc., 66(1), 143-152 (2007).   DOI
13 C. Wu, P. Jiang, W. Li, H. Guo, J. Wang, J. Chen, M. R. Prausnitz, and Z. L. Wang, Self-powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions, Adv. Funct. Mater., 30(3), 1907378 (2020).   DOI
14 I. G. Binev, P. Vassileva-Boyadjieva, and Y. I. Binev, Experimental and ab initio MO studies on the IR spectra and structure of 4-hydroxyacetanilide (paracetamol), its oxyanion and dianion, J. Mol. Struct., 447(3), 235-246 (1998).   DOI
15 S. Banerjee, P. Chattopadhyay, A. Ghosh, P. Datta, and V. Veer, Aspect of adhesives in transdermal drug delivery systems, Int. J. Adhes. Adhes., 50, 70-84 (2014).   DOI
16 K. Hamad, M. Kaseem, Y. G. Ko, and F. Deri, Biodegradable polymer blends and composites: An overview, Polym. Sci. Ser. A, 56(6), 812-829 (2014).   DOI
17 L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32(8-9), 762-798 (2007).   DOI
18 H. Almasi, B. Ghanbarzadeh, and A. A. Entezami, Physicochemical properties of starch-CMC-nanoclay biodegradable films, Int. J. Biol. Macromol., 46(1), 1-5 (2010).   DOI
19 D. R. Lu, C. M. Xiao, and S. J. Xu, Starch-based completely biodegradable polymer materials, Express Polym. Lett., 3(6), 366-375 (2009).   DOI
20 N. Reddy and Y. Yang, Citric acid cross-linking of starch films, Food Chem., 118(3), 702-711 (2010).   DOI
21 H. Y. Tak, Y. H. Yun, C. M. Lee, and S. D. Yoon, Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch, Carbohydr. Polym., 208, 261-268 (2019).   DOI
22 B. V. Bochove and D. W. Grijpma, Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications, J. Biomater. Sci-Polym. Ed., 30(2), 77-106 (2019).   DOI
23 M. Kim, H. S. Kim, M. A. Kim, H. Ryu, H. J. Jeong, and C. M. Lee, Thermohydrogel containing melanin for photothermal cancer therapy, Macromol. Biosci., 17(5), (2017).
24 F. F. Azhar, A. Olad, and A. Mirmohseni, Development of novel hybrid nanocomposites based on natural biodegradable polymer-montmorillonite/polyaniline: Preparation and characterization, Polym. Bull., 71(7), 1591-1610 (2014).   DOI
25 S. H. Hsu, K. C. Hung, and C. E. Chen, Biodegradable polymer scaffolds, J. Mater. Chem. B, 4(47), 7493-7505 (2016).   DOI