Browse > Article
http://dx.doi.org/10.14478/ace.2021.1004

Improvement of Photocatalytic Performance using Near-Infrared Upconversion Nanoparticles  

Park, Yong Il (School of Chemical Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.2, 2021 , pp. 125-131 More about this Journal
Abstract
Semiconductor-based photocatalysts can only be activated with ultraviolet or visible light due to their intrinsic bandgap, and they cannot use the energy in the near-infrared region, which accounts for about 50% of solar energy. Therefore, in order to improve the performance of the semiconductor photocatalyst, it is necessary to utilize more solar energy in a broad band ranging from ultraviolet to near-infrared. Combining upconversion nanoparticles with semiconductor photocatalysts for near-infrared absorption have thus been reported. Upconversion nanoparticles can sequentially absorb multiple near-infrared photons and convert them into ultraviolet or visible to activate photocatalysts. In addition, by coupling the semiconductor photocatalyst and the upconversion nanoparticles with the plasmonic metal nanoparticles, the photocatalytic activity can be further improved. This review summarizes the recent studies on improving the photocatalytic performance with near-infrared absorption by using upconversion nanoparticles.
Keywords
Photocatalyst; Upconversion; Nanoparticles; Near-infrared;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Cheng, S. Zhou, M. Li, and Z. Q. Li, Synthesis of g-C3N4-based NaYF4:Yb,Tm@TiO2 ternary composite with enhanced Vis/NIR-driven photocatalytic activities, Appl. Surf. Sci., 410, 383-392 (2017).   DOI
2 X. Y. Guo, W. H. Di, C. F. Chen, C. X. Liu, X. Wang, and W. P. Qin, Enhanced near-infrared photocatalysis of NaYF4:Yb,Tm/CdS/TiO2 composites, Dalton Trans., 43, 1048-1054 (2014).   DOI
3 Q. Y. Tian, W. J. Yao, Z. H. Wu, J. Liu, L. Liu, W. Wu, and C. Z. Jiang, Full-spectrum-activated Z-scheme photocatalysts based on NaYF4:Yb3+/Er3+, TiO2 and Ag66Si2O7, J. Mater. Chem. A, 5, 23566-23576 (2017).   DOI
4 Y. Y. Zhang, L. L. Wang, S. H. Park, X. Y. Kong, X. F. Lan, Z. Y. Song, and J. S. Shi, Single near-infrared-laser driven Z-scheme photocatalytic H2 evolution on upconversion material@Ag3PO4@black phosphorus, Chem. Eng. J., 375, 121967 (2019).   DOI
5 O. Ola and M. M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol. C-Photochem. Rev., 24, 16-42 (2015).   DOI
6 J. Liu, N. K. Ma, W. Wu, and Q. G. He, Recent progress on photocatalytic heterostructures with full solar spectral responses, Chem. Eng. J., 393, 124719 (2020).   DOI
7 D. R. Gamelin and H. U. Gudel, Design of luminescent inorganic materials: New photophysical processes studied by optical spectroscopy, Acc. Chem. Res., 33, 235-242 (2000).   DOI
8 D. Kim, N. Lee, Y. I. Park, and T. Hyeon, Recent advances in inorganic nanoparticle-based NIR luminescence imaging: Semiconductor nanoparticles and lanthanide nanoparticles, Bioconjugate Chem., 28, 115-123 (2017).   DOI
9 D. Kim, J. Kim, Y. I. Park, N. Lee, and T. Hyeon, Recent development of inorganic nanoparticles for biomedical imaging, ACS Central Sci., 4, 324-336 (2018).   DOI
10 H. Li, X. Wang, T. Y. Ohulchanskyy, and G. Y. Chen, Lanthanide-doped near-infrared nanoparticles for biophotonics, Adv. Mater., 33, 202000678 (2020).
11 F. Wang and X. G. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev., 38, 976-989 (2009).   DOI
12 J. M. Zhang, Y. Huang, X. Jin, A. Nazartchouk, M. S. Liu, X. Tong, Y. H. Jiang, L. Ni, S. H. Sun, Y. H. Sang, H. Liu, L. Razzari, F. Vetrone, and J. Claverie, Plasmon enhanced upconverting core@triple-shell nanoparticles as recyclable panchromatic initiators (blue to infrared) for radical polymerization, Nanoscale Horiz., 4, 907-917 (2019).   DOI
13 S. Q. Huang, L. Gu, C. Miao, Z. Y. Lou, N. W. Zhu, H. P. Yuan, and A. D. Shan, Near-infrared photocatalyst of Er3+/Yb3+codoped (CaF2@TiO2) nanoparticles with active-core/active-shell structure, J. Mater. Chem. A, 1, 7874-7879 (2013).   DOI
14 R. Balaji, S. Kumar, K. L. Reddy, V. Sharma, K. Bhattacharyya, and V. Krishnan, Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties, J. Alloy. Compd., 724, 481-491 (2017).   DOI
15 Q. Z. Zhang, J. J. Deng, Z. H. Xu, M. Chaker, and D. L. Ma, High-efficiency broadband C3N4 photocatalysts: Synergistic effects from upconversion and plasmons, ACS Catal., 7, 6225-6234 (2017).   DOI
16 M. Haase and H. Schafer, Upconverting nanoparticles, Angew. Chem. Int. Ed., 50, 5808-5829 (2011).   DOI
17 F. Wang and X. G. Liu, Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation, Acc. Chem. Res., 47, 1378-1385 (2014).   DOI
18 S. Heer, K. Kompe, H. U. Gudel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater., 16, 2102-2105 (2004).   DOI
19 Y. C. Deng, L. Tang, C. Y. Feng, G. M. Zeng, J. J. Wang, Y. Lu, Y. N. Liu, J. F. Yu, S. Chen, and Y. Y. Zhou, Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: Full-spectrum response ability and mechanism insight, ACS Appl. Mater. Interfaces, 9, 42816-42828 (2017).   DOI
20 Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect, ACS Nano, 7, 7200-7206 (2013).   DOI
21 Y. Gao, C. Shi, J. Z. Feng, G. Y. Zhao, H. Yu, Y. F. Bi, F. Ding, Y. G. Sun, and Z. H. Xu, Synergistic effect of upconversion and plasmons in NaYF4:Yb3+,Er3+,Tm3+@TiO2-Ag composites for MO photodegradation, RSC Adv., 7, 54555-54561 (2017).   DOI
22 A. Kumar, K. L. Reddy, S. Kumar, A. Kumar, V. Sharma, and V. Krishnan, Rational design and development of lanthanide-doped NaYF4@CdS-Au-RGO as quaternary plasmonic photocatalysts for harnessing visible-near-infrared broadband spectrum, ACS Appl. Mater. Interfaces, 10, 15565-15581 (2018).   DOI
23 W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light, Nat. Photonics, 6, 560-564 (2012).   DOI
24 J. Ke, S. Lu, X. Shang, Y. Liu, H. Guo, W. You, X. Li, J. Xu, R. Li, Z. Chen, and X. Chen, A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection, Adv. Sci., 6, 1901874 (2019).   DOI
25 X. J. Xie and X. G. Liu, Photonics: Upconversion goes broadband, Nat. Mater., 11, 842-843 (2012).   DOI
26 D. Song, S. Y. Chi, X. Li, C. X. Wang, Z. Li, and Z. Liu, Upconversion system with quantum dots as sensitizer: Improved photoluminescence and PDT efficiency, ACS Appl. Mater. Interfaces, 11, 41100-41108 (2019).   DOI
27 F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968-973 (2011).   DOI
28 Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. F. Liu, The effect of surface coating on energy migration-mediated upconversion, J. Am. Chem. Soc., 134, 20849-20857 (2012).   DOI
29 W. K. Su, M. M. Zheng, L. Li, K. Wang, R. Qiao, Y. J. Zhong, Y. Hu, and Z. Q. Li, Directly coat TiO2 on hydrophobic NaYF4: Yb,Tm nanoplates and regulate their photocatalytic activities with the core size, J. Mater. Chem. A, 2, 13486-13491 (2014).   DOI
30 Z. H. Xu, M. Quintanilla, F. Vetrone, A. O. Govorov, M. Chaker, and D. L. Ma, Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au, Adv. Funct. Mater., 25, 2950-2960 (2015).   DOI
31 Y. W. Zhang and Z. L. Hong, Synthesis of lanthanide-doped NaYF4@TiO2 core-shell composites with highly crystalline and tunable TiO2 shells under mild conditions and their upconversion-based photocatalysis, Nanoscale, 5, 8930-8933 (2013).   DOI
32 E. J. Cheng, W. J. Yin, S. Bai, R. Qiao, Y. J. Zhong, and Z. Q. Li, Synthesis of Vis/NIR-driven hybrid photocatalysts by electrostatic assembly of NaYF4:Yb,Tm nanocrystals on g-C3N4 nanosheets, Mater. Lett., 146, 87-90 (2015).   DOI
33 S. Y. Lee, G. Lee, Y.-S. Jun, and Y. I. Park, Visible/near-infrared driven highly efficient photocatalyst based on upconversion nanoparticles/g-C3N4 nanocomposite, Appl. Surf. Sci., 508, 144839 (2020).   DOI
34 C. Yao, W. X. Wang, P. Y. Wang, M. Y. Zhao, X. M. Li, and F. Zhang, Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy, Adv. Mater., 30, 1704833 (2018).   DOI
35 Z. B. Wu, X. Z. Yuan, G. M. Zeng, L. B. Jiang, H. Zhong, Y. C. Xie, H. Wang, X. H. Chen, and H. Wang, Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation, Appl. Catal. B-Environ., 225, 8-21 (2018).   DOI