Browse > Article
http://dx.doi.org/10.14478/ace.2020.1101

Synthesis of SiO2/Ag Core-shell Nanoparticles for Conductive Paste Application  

Sim, Sang-Bo (Changsung Nanotech Co., Ltd.)
Han, Jong-Dae (School of Civil, Environmental and Chemical Engineering, Changwon National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.1, 2021 , pp. 28-34 More about this Journal
Abstract
SiO2/Ag core-shell nanoparticles were synthesized by combining modified Stöber process and reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane reverse micells. The SiO2/Ag core-shells were studied for structure, morphology and size using UV-visible spectroscopy, XRD, SEM and TEM. The size of a SiO2/Ag core-shell could be controlled by changing the [water]/[DDBA] molar ratio (WR) values. The size and the polydispersity of SiO2/Ag core-shells increased with increase of the WR value. The resultant Ag nanoparticles exhibit a strong surface plasmon resonance (SPR) peak at 430 nm over the amorphous SiO2 nanoparticles. The SPR peak shifted to the red side with increase in nanoparticle size. Conductive pastes with 70 wt% SiO2/Ag core-shell were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste film of the SiO2/Ag core-shell showed higher surface resistance than the commercial Ag paste in the range of 460~750 µΩ/sq.
Keywords
$SiO_2/Ag$ core-shell; Ag nanoparticles; Core-shell; Surface plasmon resonance; Conductive paste;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Hagura, W. Widiyastuti, F. Iskandar, and K. Okuyama, Characterization of silica-coated silver nanoparticles prepared by a reverse micelle and hydrolysis-condensation process, Chem. Eng. J., 156, 200-205 (2010).   DOI
2 J. Eastoe, M. J. Hollamby, and L. Hudson, Recent advances in nanoparticle synthesis with reversed micelles, Adv. Colloid Interface Sci., 128-130, 5-15 (2006).   DOI
3 F. Ghanbary and A. Jafarian, Preparation and photocatalytic properties of silver doped titanium dioxide nanoparticles and using artificial neural network for modeling of photocatalytic activity, Aust. J. Basic & Appl. Sci., 5, 2889-2898 (2011)
4 R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha, Size distribution of silver nanoparticles: UV-visible spectroscopic assessment, Nanosci. Nanotechnol. Lett., 4, 30-34 (2012).   DOI
5 O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, Size and temperature dependence of the surface plasmon resonance in silver nanoparticles, Ukr. J. Phys., 57, 266-277 (2012).   DOI
6 S. Peng, J. M. McMahon, G. C. Schatz, S. K. Gray, and Y. Sun, Reversing the size-dependence of surface plasmon resonances, Proc. Natl. Acad. Sci., 107, 14530-14534 (2010).   DOI
7 F. Ding, E. B. Guidez, C. M. Aikens, and X. Li, Quantum coherent plasmon in silver nanowires: A real-time TDDFT study. J. Chem. Phys., 140, 244705 (2014).   DOI
8 A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol, Physica E, 27, 104-112 (2005).   DOI
9 C. Petit, P. Lixon, and M. P. Pileni, In situ synthesis of silver nanocluster in AOT reverse micelles, J. Phys. Chem., 97, 12974-12983 (1993).   DOI
10 Y. Yu, Y. Jiang, Z. Tang, Q. Guo, J. Jia, Q. Xue, K. Wu, and E. Wang, Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films, Phys. Rev. B, 72, 205405 (2005).   DOI
11 J.-L. Gong, J.-H. Jiang, Y. Liang, G.-L. Shen, and R.-Q. Yu, Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology, J. Colloid Interface Sci., 298, 752-756 (2006).   DOI
12 Z. Moradi, K. Akhbari, A. Phuruangrat, and F. Costantino, Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor, J. Mol. Struct., 1133, 172-178 (2017).   DOI
13 V. Sharma, D. Verma, and G. S. Okram, Influence of surfactant, particle size and dispersion medium on surface plasmon resonance of silver nanoparticles, J. Phys. Condens. Matter., 32, 145302-145304 (2020).   DOI
14 A. Ledo, F. Martinez, M. A. Lopez-Quintela, and J. Rivas, Synthesis of Ag clusters in microemulsions: A time-resolved UV-vis and fluorescence spectroscopy study, Physica B, 398, 273-277 (2007).   DOI
15 D. Singha, N. Barman, and K. Sahu, A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature, J. Colloid Interface Sci., 413, 37-42 (2014)   DOI
16 P. S. Popovetskiya and D.I. Beketovaa, Silver nanoparticles stabilized by AOT and Tergitol NP-4 mixture: Influence of composition on electrophoretic concentration, properties of concentrated organosols and conductivity of films, Colloids Surf. A, 568, 51-58 (2019).   DOI
17 M. Lismont, C. A. Paez, and L. Dreesen, A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles, J. Colloid Interface Sci., 447, 40-49 (2015).   DOI
18 W. Stober and A. Fink, Controlled, growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62-69 (1968).   DOI
19 K. Natte, T. Behnke, G. Orts-Gil, C. Wurth, J. F. Friedrich, W. Osterle, and U. Resch-Genger, Synthesis and characterisation of highly fluorescent core-shell nanoparticles based on Alexa-Dyes, J. Nanoparticles Res., 14, 680-697 (2012).   DOI
20 S. I. Mogal, V. G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. A. Joshi, and D. O. Shah, Single-step synthesis of silver-doped titanium dioxide: Influence of silver on structural, textural, and photocatalytic properties, Ind. Eng. Chem. Res., 53, 5749-5758 (2014).   DOI
21 S. Kalele, S. W. Gosavi, J. Urban, and S. K. Kulkarni, Nanoshell particles: Synthesis, properties and applications, Curr. Sci., 91, 1038-1052 (2006).
22 K. I. Dhanalekshmi and K. S. Meena, Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles, Spectrochim. Acta A, 128 887-890 (2014).   DOI
23 A. Sakthisabarimoorthi, S. A. Martin Britto Dhas, and M. Jose, Fabrication and nonlinear optical investigations of SiO2@Ag core-shell nanoparticles, Mat. Sci. Semicon. Proc., 71, 69-75 (2017).   DOI
24 J.-L. Gong, J.-H. Jiang, Y. Liang, G.-L. Shen, and R.-Q. Yu, Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology, J. Colloid Interface Sci., 298, 752-756 (2006).   DOI
25 I. Devecia and B. Mercimekb, Performance of SiO2/Ag Core/Shell particles in sonocatalalytic degradation of Rhodamine B, Ultrason. Sonochem., 51, 197-205 (2019).   DOI
26 C. Xu, W.-J. Li, Y.-M. Wei, and X.-Y. Cui, Characterization of SiO2/Ag composite particles synthesized by in situ reduction and its application in electrically conductive adhesives, Mater. Des., 83, 745-752 (2015).   DOI
27 H. Misran, M. A. Salim, and S. Ramesh, Effect of Ag nanoparticles seeding on the properties of silica spheres, Ceram. Int., 44, 5901-5908 (2018).   DOI
28 E. B. Choi and J.-H. Lee, Dewetting behavior of Ag in Ag-coated Cu particle with thick Ag shell, Appl. Surf. Sci., 480, 839-845 (2019)   DOI
29 J. Alimunnisa, K. Ravichandran, and K. S. Meena, Synthesis and characterization of Ag@SiO2 core-shell nanoparticles for antibacterial and environmental applications, J. Mol. Liq., 231 281-287 (2017).   DOI
30 J. H. Sohn, L. Q. Pham, H. S. Kang, J. H. Park, B. C. Lee, and Y. S. Kang, Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation, Radiat. Phys. Chem., 79, 1149-1153 (2010).   DOI
31 A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol, Mater. Res. Bull., 43, 90-96 (2008).   DOI
32 J. C. Flores, V. Torres, M. Popa, D. Crespo, and J. M. Calderon-Moreno, Preparation of core-shell nanospheres of silica-silver: SiO2@Ag, J. Non-Cryst. Solids, 354, 5435-5439 (2008).   DOI
33 Y. Xie, R. Ye, and H. Liu, Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant, Colloids Surf, A. Physicochem. Eng. Asp., 279, 175-178 (2006).   DOI