Browse > Article
http://dx.doi.org/10.14478/ace.2020.1094

Development of Fluorescent Small Molecules for Imaging of Alzheimer's Disease Biomarkers  

Min, Changho (Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University)
Ha, Heonsu (Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University)
Jeon, Jongho (Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.1, 2021 , pp. 1-9 More about this Journal
Abstract
Alzheimer's disease (AD), an irreversible degenerative disorder, is associated with accumulation and aggregation of amyloid-β peptides, hyperphosphorylated tau proteins, and high level of metal ions in the brain. Up to date, there is no effective therapeutic agent to stop the progress of the disease and thus early and accurate diagnosis of AD has gained increasing attention in recent years. Among several diagnostic methods, an optical imaging using fluorescent probes is one of the most promising tools to visualize AD biomarkers. In this review, we will introduce fluorescent probes that can be applied to in vivo brain imaging of AD models and also their structure. It is expected that the present review will provide useful information to many scientists in the related research fields.
Keywords
Alzheimer's disease; Diagnosis; Fluorescent probes; Biomarkers; Molecular imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Lv, A. Sun, P. Wei, N. Zhang, H. Lan, and T. Yi, A spiropyran-based fluorescent probe for the specific detection of b-amyloid peptide oligomersin Alzheimer's disease, Chem. Commun., 52, 8865 (2016).   DOI
2 J. W. Yan, J. Y. Zhu, K. X. Zhou, J. S. Wang, H. Y. Tan, Z. Y. Xu, S. B. Chen, Y. T. Lu, M. C. Cui, and L. Zhang, Neutral merocyanine dyes: for in vivo NIR fluorescence imaging of amyloid-β plaques, Chem. Commun., 53, 9910-9913 (2017).   DOI
3 H. L. Yang, S. Q. Fang, Y. W. Tang, C. Wang, H. Luo, L. L. Qu, J. H. Zhao, C. J. Shi, F. C. Yin, X. B. Wang, and L. Y. Kong, A hemicyanine derivative for near-infrared imaging of betaamyloid plaques in Alzheimer's disease, Eur. J. Med. Chem., 179, 736-743 (2019).   DOI
4 H. Y. Kim, U. Sengupta, P. Shao, M. J. Guerrero-Munoz, R. Kayed, and M. Bai, Alzheimer's disease imaging with a novel Tau targeted near infrared ratiometric probe, Am. J. Nucl. Med. Mol. Imaging, 3, 102-117 (2013).
5 S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation, Mol. Pharmacol., 69, 195-206 (2006).   DOI
6 C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova, and A. Moore, Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits, J. Am. Chem. Soc., 131, 15257-15261 (2009).   DOI
7 X. Zhang, Y. Tian, Z. Li, X. Tian, H. Sun, H. Liu, A. Moore, and C. Ran, Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease, J. Am. Chem. Soc., 135, 16397-16409 (2013).   DOI
8 K. S. Park, Y. Seo, M. K. Kim, K. Kim, Y. K. Kim, H. Choo, and Y. A. Chong, Curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer's disease, Org. Biomol. Chem., 13, 11194-11199 (2015).   DOI
9 X. Zhang, Y. Tian, C. Zhang, X. Tian, A. W. Ross, R. D. Moir, H. Sun, R. E. Tanzi, A. Moore, and C. Ran, Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer's disease, Proc. Natl. Acad. Sci. U. S. A., 112, 9734-9739 (2015).   DOI
10 Y. Li, J. Yang, H. Liu, J. Yang, L. Du, H. Feng, Y. Tian, J. Cao, and C. Ran, Tuning the stereo-hindrance of a curcumin scaffold for the selective imaging of the soluble forms of amyloid beta species, Chem. Sci., 8, 7710-7717 (2017).   DOI
11 Y. Seo, K. S. Park, T. Ha, M. K. Kim, Y. J. Hwang, J. Lee, H. Ryu, H. Choo, and Y. Chong, A smart near-infrared fluorescence probe for selective detection of tau fibrils in Alzheimer's disease, ACS Chem. Neurosci., 7, 1474-1481 (2016).   DOI
12 K. S. Park, K. Yoo, M. K. Kim, W. Jung, Y. K. Choi, and Y. Chong, A novel probe with a chlorinated α cyanoacetophenone acceptor moiety shows near-infrared fluorescence specific for tau fibrils, Chem. Pharm. Bull., 65, 1113-1116 (2017).   DOI
13 K.-S. Park, M. K. Kim, Y. Seo, T. Ha, K. Yoo, S. J. Hyeon, Y. J. Hwang, J. Lee, H. Ryu, H. Choo, and Y. A. Chong, Difluoroboron β-diketonate probe shows "Turn-on" near-infrared fluorescence specific for tau fibrils, ACS Chem. Neurosci., 8, 2124-2131 (2017).   DOI
14 A. Loudet and K. Burgess, BODIPY dyes and their derivatives: Syntheses and spectroscopic properties, Chem. Rev., 107, 4891-4932 (2007).   DOI
15 H. Watanabe, M. Ono, K. Matsumura, M. Yoshimura, H. Kimura, and H. Saji, Molecular imaging of ß-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes, Mol. Imaging, 12, 338-347 (2013).
16 C. A. Mathis, N. S. Mason, B. J. Lopresti, and W. E. Klunk, Development of positron emission tomography β-amyloid plaque imaging agents, Semin. Nucl. Med., 42, 423-432 (2012).   DOI
17 W. E. Klunk, B. J. Bacskai, C. A. Mathis, S. T. Kajdasz, M. E. McLellan, M. P. Frosch, M. L. Debnath, D. P. Holt, Y. Wang, and B. T. Hyman, Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered congo red derivative, J. Neuropathol. Exp. Neurol., 61, 797-805 (2002).   DOI
18 M. Hintersteiner, A. Enz, P. Frey, A.-L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K.-H. Wiederhold, and H.-U. Gremlich, In vivo detection of amyloid-β deposits by near-infrared imaging using an oxazine-derivative probe, Nat. Biotechnol., 23, 577-583 (2005).   DOI
19 A. G. Vlassenko, T. L. S. Benzinger, and J. C. Morris, PET amyloid-beta imaging in preclinical Alzheimer's disease, Biochim. Biophys. Acta, Mol. Basis Dis., 1822, 370-379 (2012).   DOI
20 L. Teoh, D. Su, S. Sahu, S. W. Yun, E. Drummond, F. Prelli, S. Lim, S. Cho, S. Ham, T. Wisniewski, and Y. T. Chang, A chemical fluorescent probes for the detection of Aβ oligomers, J. Am. Chem. Soc., 137, 13503 (2015).   DOI
21 W. Ren, J. Zhang, C. Peng, H. Xiang, J. Chen, C. Peng, W. Zhu, R. Huang, H. Zhang, and Y. Hu, Fluorescent imaging of beta-amyloid using BODIPY based near-infrared off-on fluorescent probe, Bioconjugate Chem., 29, 3459-3466 (2018).   DOI
22 P. Verwilst, H.-R. Kim, J. Seo, N.-W. Sohn, S.-Y. Cha, Y. Kim, S. Maeng, J.-W. Shin, J. H. Kwak, C. Kang, and J. S. Kim, Rational design of in vivo tau tangle-selective near infrared fluorophores: Expanding the BODIPY universe, J. Am. Chem. Soc., 139, 13393-13403 (2017).   DOI
23 W. Yang, Y. Wong, O. T. Ng, L. P. Bai, D. W. Kwong, Y. Ke, Z. H. Jiang, H. W. Li, K. K. Yung, and M. S. Wong, Inhibition of beta-amyloid peptide aggregation by multifunctionalcarbazole-based fluorophores, Angew. Chem. Int. Ed., 51, 1804-1810 (2012).   DOI
24 Y. Li, D. Xu, S. L. Ho, H. W. Li, R. Yang, and M. S. Wong, A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation, Biomaterials, 94, 84-92 (2016).   DOI
25 E. E. Nesterov, J. Skoch, B. T. Hyman, W. E. Klunk, B. J. Bacskai and T. M. Swager, In vivo optical imaging of amyloid aggregates in brain: Design of fluorescent markers, Angew. Chem. Int. Ed., 44, 5452-5456 (2008).   DOI
26 N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, Promising two-photon probes for in vivo detection of β amyloid deposits, Chem. Commun., 50, 11694-11697 (2014).   DOI
27 P. Verwilst, H. S. Kim, S. Kim, C. Kang, and J. S. Kim, Shedding light on tau protein aggregation: the progress in developing highly selective fluorophores, Chem. Soc. Rev., 47, 2249-2265 (2018).   DOI
28 P. Verwilst, H.-R. Kim, J. Seo J, N.-W. Sohn, S.-Y. Cha, Y. Kim, S. Maeng, J.-W. Shin, J. H. Kwak C. Kang, and J. S. Kim, Rational design of in vivo tau tangle-selective near-infrared fluorophores: expanding the bodipy universe, J. Am. Chem. Soc., 139, 13393-13403 (2017).   DOI
29 S. B. Raymond, J. Skoch, I. D. Hills, E. E. Nesterov, T. M. Swager, and B. J. Bacskai, Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology, Eur. J. Nucl. Med. Mol. Imaging, 35, 93-98 (2008).   DOI
30 Y. Wang, T. Liu, E. Zhang, S. Luo, X. Tan, and C. Shi, Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells, Biomaterials, 35, 4116-4124 (2014).   DOI
31 J. Greenwald and R. Riek, Biology of amyloid: Structure, function, and regulation, Structure, 18, 1244-1260 (2018).   DOI
32 K. V. Kuchibhotla, S. Wegmann, K. J. Kopeikina, J. Hawkes, N. Rudinskiy, M. L. Andermann, T. L. Spires-Jones, B. J. Bacskai, and B. T. Hyman, Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo, Proc. Natl. Acad. Sci. U. S. A., 111, 510-514 (2014).   DOI
33 P. Faller, C. Hureau, and O. Berthoumieu, Role of metal ions in the self-assembly of the Alzheimer's amyloid-beta peptide, Inorg. Chem., 52, 12193-12206 (2013).   DOI
34 Y.-H. Suh and F. Checler, Amyloid precursor protein, presenilins, and α-synuclein: Molecular pathogenesis and pharmacological applications in Alzheimer's disease, Pharmacol. Res., 54, 469-525 (2002).
35 U. C. Müller, T. Deller, and M. Korte, Not just amyloid: Phy- siological functions of the amyloid precursor protein family, Nat. Rev. Neurosci., 18, 281-298 (2017).   DOI
36 K. P. Kepp, Bioinorganic chemistry of Alzheimer's disease, Chem. Rev., 112, 5193-5239 (2012).   DOI
37 K. Iqbal, A. del C. Alonso, S. Chen, M. O. Chohan, E. El-Akkad, C.-X. Gong, S. Khatoon, B. Li, F. Liu, A. Rahman, H. Tanimukai, and I. Grundke-Iqbal, Tau pathology in Alzheimer disease and other tauopathies, Biochim. Biophys. Acta, Mol. Basis Dis., 1739, 198-210 (2005).   DOI
38 A. Lorenzo and B. A. Yankner, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red, Proc. Natl. Acad. Sci. U. S. A., 91, 12243-12247 (1994).   DOI
39 G. Lippens, A. Sillen, I. Landrieu, L. Amniai, N. Sibille, P. Barbier, A. Leroy, X. Hanoulle, and J.-M. Wieruszeski, Tau aggregation in Alzheimer's disease, Prion, 1, 21-25 (2007).   DOI
40 I. Grundke-Iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski, and L. I. Binder, Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. U. S. A., 83, 4913-4917 (1986).   DOI
41 W. E. Klunk, M. L. Debnath, and J. W. Pettegrew, Chrysamine-G binding to Alzheimer and control brain: Autopsy study of a new amyloid probe, Neurobiol. Aging, 16, 541-548 (1995).   DOI
42 H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T, Anal. Biochem., 177, 244-249 (1989).   DOI