Browse > Article
http://dx.doi.org/10.14478/ace.2020.1079

Study on the Effect of NH3-Selective Catalytic Reduction Efficiency according to Sb Calcination Temperature in V/Sb/TiO2 Catalyst  

Choi, Gyeong Ryun (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University)
Yeo, Jong Hyeon (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University)
Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 646-652 More about this Journal
Abstract
In this study, an NH3-selective catalytic reduction (SCR) experiment was performed to control NOx in the temperature range of 200~500 ℃. The reaction activity experiment was conducted by varying the firing temperature of Sb/TiO2 when using V/Sb/TiO2 composite as a catalyst. As a result, when the sintering temperature of Sb/TiO2 was 600 ℃, the efficiency was the best, and it was confirmed that the NOx conversion rate was close to 80% at the reaction temperature of 250 ℃. H2-temperature programmed reduction (TPR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses were employed to derive the cause of the activity enhancement when prepared at different firing temperatures as described above. As a result, when the sintering temperature of Sb/TiO2, which showed an excellent activity, was prepared at 600 ℃, it was confirmed that VSbO4 was generated. This indicates that the non-stoichiometric species of V increased, resulting in the excellent NOx conversion rate of V/Sb/TiO2.
Keywords
$NH_3$-SCR; NOx; Sb; Catalyst; $VSbO_4$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Rahkamaaa-Tolonen, T. Maunula, M. Lomma, M. Huuhtanen, and R. L. Keiski, The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction, Catal. Today, 100 (3-4), 217-222 (2005).   DOI
2 H. Chang, M. T. Jong, C. Wang, R. Qu, Y. Du, J. Li, and J. Hao, Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNOx: Significance of phosphorus resistance and N2 selectivity, Environ. Sci. Technol., 47(20), 11692-11699 (2013).   DOI
3 H. Bosch and F. Janssen, Catalytic reduction of nitrogen oxides - A review on the fundamentals and technology, Catal. Today, 2(4), 369-531 (1990).   DOI
4 P. Forzatti, Environmental catalysis for stationary applications, Catal. Today, 62, 51-65 (2000).   DOI
5 M. A. Centeno, I. Carrizosa, and J. A. Odriozola, NO-NH3 coad-sorption on vanadia/titania catalysts: Determination of the reduction degree of vanadium, Appl. Catal. B: Environ., 29, 307-314 (2001)   DOI
6 G. C. Bond and S. F. Tahir, Influence of phosphorous and potassium additives on the properties of vanadia/titania catalysts, Catal. Today, 10, 393-395 (1990).   DOI
7 W. Chizhong, Y. Shijian, C. Huazhen, P. Yue, and L. Junhua, Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity, Chem. Eng. J., 225, 520-527 (2013).   DOI
8 P. Yue, L. Kezhi, and L. Junhua, Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study, Appl. Catal. B: Environ., 140-141, 483-492 (2013).   DOI
9 L. Zhiming, Z. Junzhi, Z. Shaoxuan, M. Lingling, and W. Seong lhl, Selective catalytic reduction of NOx by NH3 over MoO3-promoted CeO2/TiO2 catalyst, Catal. Commun., 46, 90-93 (2014).   DOI
10 S. T. Choo, S. D. Yim, I.-S. Nam, S.-W. Ham, and J.-B. Lee, Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO3 catalyst for NO reduction by NH3, Appl. Catal. B: Environ., 44, 237-252 (2003).   DOI
11 K. Motonobu and H. Mitsuharu, V2O5-WO3/TiO2-SiO2-SO42- catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2, Appl. Catal. B: Environ., 63, 104-113 (2006).   DOI
12 M. D. Amiridis, I. E. Wachs, C. Deo, J.-M. Jehng, and D. S. Kim, Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: Influence of vanadia loading, H2O, and SO2, J. Catal., 161, 247-253 (1996).   DOI
13 S. Youn, I. Song, and D. H. Kim, Roles of promoters in V2O5/TiO2 catalysts for selective catalytic reduction of NOx with NH3: Effect of order of impregnation, J. Nanosci. Nanotechnol., 16, 4350-5356 (2016).   DOI
14 K. J. Lee, P. A. Kumar, M. S. Maqbool, K. N. Rao, K. H. Song, and H. P. Ha, Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity, Appl. Catal. B: Environ., 142-143, 705-717 (2013).   DOI
15 A. Barbaro, S. Larrondo, S. Duhalde, and N. Amadeo, Effect of titanium-doping on the properties of vanadium antimonate catalysts, Appl. Catal. A: Gen., 193, 277-283 (2000).   DOI
16 H. H. Phil, M. P. Reddy, P. A. Kumar, L. K. Ju, and J. S. Hyo, SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures, Appl. Catal. B: Environ., 78, 301-308 (2008).   DOI
17 N. Yang, R. Guo, W. Pan, Q. Chen, Q. Wang, and C. Lu, The promotion effect of Sb on the Na resistance of Mn/TiO2catalyst for selective catalytic reduction of NO with NH3, Fuel, 169, 87-92 (2016).   DOI
18 J. H. Shin and S. C. Hong, The effect of calcination temperature of RuTi catalysts on reaction activity of NH3-SCO, Appl. Chem. Eng., 31, 200-207 (2020).
19 S. Larrondo, B. Irigoyen, G. Baronetti, and N Amadeo, Vanadium antimonate as a partial oxidation catalyst, Appl. Catal. A: Gen., 250, 279-285 (2003).   DOI
20 D. H. Kim, D. W. Kwon, and S. C. Hong, Structural characteristics of V-based catalyst with Sb on selective catalyic NOx reduction with NH3, Appl. Surf. Sci., 538, 148088 (2021).   DOI
21 A. M. Beale, I. Lezcano Gonzalez, T. Maunula, and R. G. Palgrave, Development and characterization of thermally stable supported V-W-TiO2 catalysts for mobile NH3-SCR applications, Catal. Struct. React., 1, 25-34 (2015).   DOI
22 N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, Vanadia/TiO2 catalysts for selective catalysts reduction of nitric oxide by ammonia, J. Catal., 151, 241-252 (1995).   DOI
23 N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, Vanadia/TiO2 catalysts for selective catalysts reduction of nitric oxide by ammonia, J. Catal., 151, 241-252 (1995).   DOI
24 C. J. Woo, N. I. Sik, and H. S. Won, Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3, Catal. Today, 111, 242-247 (2006).   DOI
25 M. A. Vuurman, I. E. Wachs, and A. M. Hirt, Structural determination of supported V2O5-WO3/TiO2 catalysts by in situ Raman spectroscopy and X-ray photoelectron spectroscopy, J. Phys. Chem., 95, 9928-9937 (1991).   DOI
26 F. Montilla, E. Morallon, A. De Battisti, S. Barison, S. Daolio, and J. L. Vazquez, Preparation and characterization of antimony-doped Tin dioxide electrodes. 3. XPS and SIMS characterization, J. Phys. Chem. B, 108, 15976-15981 (2004).   DOI
27 T. Krishnakumar, R. Jayaprakash, N. Pinna, A. R. Phani, M. Passacantando, and S. Santucci, Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles, J. Phys. Chem. Solids, 70, 993-999 (2009).   DOI
28 S. H. Choi, S. P. Cho, J. Y. Lee, S. H. Hong, S. C. Hong, and S. I. Hong, The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature, J. Mol. Catal. A Chem., 304, 166-173 (2009).   DOI