Browse > Article
http://dx.doi.org/10.14478/ace.2020.1070

Evaluation for Interactive Toxic Effects of Binary Heavy Metals on Bacterial Growth and Phosphorus Removal under Co-Culture Condition of Alcaligenes sp. and Pseudomonas sp.  

Kim, Deok-Hyun (National Institute of Environmental Research)
Park, Sang-Wook (Department of Environmental and Biological Chemistry, Chungbuk National University)
Kim, Deok-Won (Department of Environmental and Biological Chemistry, Chungbuk National University)
Park, Ji-Su (EHS Part, Doosan Corporation Electro-Materials)
Oh, Eun-Ji (Water and Land Research Group/Division for Natural Environment, Korea Environment Institute)
Yoo, Jin (Department of Environmental and Biological Chemistry, Chungbuk National University)
Chung, Keun-Yook (Department of Environmental and Biological Chemistry, Chungbuk National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 612-623 More about this Journal
Abstract
This study was initiated to quantitatively evaluate the inhibitory effects of five heavy metals (Cd, Cu, Zn, Pb, Ni) on bacterial growth and phosphorus removal in the binary culture of Alcaligenes sp. plus Pseudomonas sp. IC50 values of Alcaligenes sp. plus Pseudomonas sp. for Cd, Cu, Zn, Pb, and Ni were 0.75, 10.93, 7.08, 13.30, and 15.78 mg/L, respectively. For the binary treatments of heavy metals, IC50 was the lowest in the treatment of Cd + Cu, whereas, it was the highest in the Ni + Pb treatment. The EC50 values for Cd, Cu, Zn, Pb, and Ni were 0.54, 11.08, 6.14, 9.33, and 13.81 mg/L, respectively. For the binary treatments of heavy metals, EC50 was the lowest in the Cd + Zn, whereas, the highest in the Zn + Ni. Based on both IC50 and EC50 values for the binary culture of bacteria with the binary mixtures of heavy metals, the most interactive effect was found to be antagonistic, though the only synergistic effect was found in Cu + Ni treatment. Therefore, our results can provide basic data on the toxic effects of heavy metals on the bacterial growth and phosphorus removal in the wastewater treatment process.
Keywords
Alcaligenes sp.; Pseudomonas sp.; Co-Culture; Heavy metals; Toxicity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 S. Ding, J. Wu, M. Zhang, H. Lu, Q. Mahmood, and P. Zheng. Acute toxicity assessment of ANAMMOX substrates and anti-biotics by luminescent bacteria test, Chemosphere, 140, 174-183 (2015).   DOI
2 Y. S. Park, H. T. Park, and D. S. Kim, A study on the organic, nitrogen and phosphorus removal in (AO)2 SBR and A2O SBR, J. Environ. Health Sci., 13, 340-348 (2005).
3 M. C. Jung, M. Y. Jung, and Y. W. Choi, Environmental assessment of heavy metals around abandoned metalliferous mine in Korea, Econ. Environ. Geol., 31, 23-33 (2004).
4 M. J. K. Ahmed and M. Ahmaruzzaman, A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions, J. Water Process Eng., 10, 39-47 (2016).   DOI
5 S. D. Cunningham and D. W. Ow, Promises and prospects of phytoremediation, Plant Physiol., 110, 715-719 (1996).   DOI
6 J. P. Vareda, A. J. Valente, and L. Duraes, Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review, J. Environ. Manage., 246, 101-118 (2019).   DOI
7 S. H. Park, S. I. Choi, J. B. Park, H. K. Han, S. D. Bae, I. J. Sung, and E. R. Park, Phytoremediation on the heavy metal contaminated soil by hyperaccumulators in the greenhouse, J. Soil Groundw. Environ., 16(5), 1-8 (2011).   DOI
8 J. W. Lee, H. M. Ryu, S. Heo, and U. K. Hwang, Toxicity assessment of heavy metals (As, Cr and Pb) using the rates of survival and population growth in marine rotifer, Brachionus Plicatilis, Korean J. Environ. Biol., 34, 193-200 (2016)   DOI
9 A. Hassen, N. Saidi, M. Cherif, and A. Boudabous, Resistance of environmental bacteria to heavy metals, Bioresour. Technol., 64, 7-15 (1998).   DOI
10 P. Prabhakaran, M. A. Ashraf, and W. S. Aqma, Microbial stress response to heavy metals in the environment, RSC Advances, 6 (111), 109862-109877 (2016).   DOI
11 A. Konopka and T. Zakharova, Quantification of bacterial lead resistance via activity assays, J. Microbiol. Methods, 37, 17-22 (1999).   DOI
12 C. Shopsis, Antagonism of cadmium cytotoxicity by differentiation inducers, Cell Biol. Toxicol., 10, 191-205 (1994).   DOI
13 K. J. Buhl and S. J. Hamilton, Hazard evaluation of inorganics, single and in mixtures, to Flannelmouth sucker (Catostomus latipinnis) in the San Juan river, New mexico, Ecotox. Environ. Safe., 38, 296-308 (1997).   DOI
14 S. Tao, T. Liang, J. Cao, R. W. Dawson, and C. Liu, Synergistic effect of copper and lead uptake by fish, Ecotox. Environ. Safe., 44, 190-195 (1999).   DOI
15 S. S. Sharma, H. Schat, R. Vooijs, and L. M. Van Heerwaarden, Combination toxicology of copper, zinc, and cadmium in binary mixtures: Concentration-dependent antagonistic, nonadditive, and synergistic effects on root growth in Silene vulgaris, Environ. Toxicol. Chem., 18, 348-355 (1999).   DOI
16 F. E. Alimohamadi, F. Separovic, C. J. Barrow, R. A. Cherny, F. Fraser, A. I. Bush, C. L. Masters, and K. J. Barnhan, Methionine regulates copper/hydrogen peroxide oxidation products of Aβ, J. Pept. Sci., 11, 353-360 (2005).   DOI
17 V. W. W. Bao, K. M. Y. Leung, K. W. H. Kwok, A. Q. Zhang, and G. C. S. Lui, Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria, Mar. Pollut. Bull., 57, 616-623 (2008).   DOI
18 Z. Z. Zhang, Q. Q. Zhang, J. J. Xu, R. Deng, Z. Q. Ji, Y. H. Wu, and R. C. Jin, Evaluation of the inhibitory effects of heavy metals on anammox activity: A batch test study, Bioresour. Technol., 200, 208-216 (2016).   DOI
19 C. Y. Chen, J. B. Huang, and S. D. Chen, Assessment of the microtox toxicity test and its application for industrial wastewater, Water Sci. Tech., 36, 375-382 (1997).
20 E. I. Yilmaz, Metal tolerance and biorotption capacity of Bacillus Circulans strain EB1, Res. Microbiol., 154, 409-415 (2003).   DOI
21 Y. J. An, Y. M. Kim, T. I. Kwon, and S. W. Jeong, Combined effect of copper, cadmium, and lead upon Cucumis Sativus growth and bioaccumulation, Sci. Total Environ., 326, 85-93 (2004).   DOI
22 A. Di Cesare, E. Eckert, and G. Corno, Co-selection of antibiotic and heavy metal resistance in freshwater bacteria, J. Limnol., 75, 59-66 (2016).
23 I. C. Kong, Joint effects of heavy metal binary mixtures on seed germination, root and shoot growth, bacterial bioluminescence, and gene mutation, J. Environ. Sci., 25, 889-894 (2013).   DOI
24 N. R. Philips and C. W. Hickey, Genotype-dependent recovery from acute exposure to heavy metal contamination in the fresh-water clam Sphaerium novaezelandiae, Aquatic Toxicol., 99, 507-513 (2010).   DOI
25 J. H. Lange and K. W. Thomulka, Use of the Vibrio harveyi toxicity test for evaluating mixture interactions of nitrobenzene and dinitrobenzene, Ecotox. Environ. Safe., 38, 2-12 (1997).   DOI
26 X. Liu, S. Zhang, X. Shan, and P. Christie, Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination, Ecotox. Environ. Safe., 68, 305-313 (2007).   DOI
27 X. Xu, Y. Li, Y. Wang, and Y. Wang, Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay, Toxicol. in Vitro, 25, 295-300 (2011).
28 S. S. Lewis, P. L. Klerks, and P. L. Leberg, Relationship between allozyme genotype and sensitivity to stressors fin the western mosquitofish Gambusia Affinis detected for elevated temperature but not mercury, Aquat. Toxicol., 52. 205-216 (2001).   DOI
29 M. Mulvey, M. C. Newman, W. K. Vogelbein, M. A. Unger, and D. R. Ownby, Genetic structure and mtDNA diversity of Fundulus heteroclitus populations from polycyclic aromatic hydrocarbon-contaminated sites, Environ. Toxicol. Chem., 22, 671-677 (2003).   DOI
30 A. Oehmen, P. C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L. L. Blackall, and M. A. Reis, Advances in enhanced biological phosphorus removal: From micro to macro scale, Water Res., 41(11), 2271-2300 (2007).   DOI
31 Y. Comeau, K. J. Hall, R. E. W. Hancock, and W. K. Oldham, Biochemical model for enhanced biological phosphorus removal, Water Res., 20, 1511-1521 (1986).   DOI
32 A. Drizo, C. A. Frost, J. Grace, and K. A. Smith, Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems, Water Res., 33, 3595-3602 (1999).   DOI
33 R. I. Sedlak, Phosphorus and Nitrogen Removal from Municipal Wastewater, 2nd Ed., Lewis Publishers, USA (1991).
34 M. Y. Yu, J. J. Park, and S. J. Hwang, Study on the possibility of biological phosphorus removal through anaerobic-aerobic method by Cyanobacteria synechococcus sp., J. Korea Soc. Waste Manag., 36(8), 731-736 (2018)   DOI
35 M. F. R. Zuthi, W. S. Guo, H. H. Ngo, L. D. Nghiem, and F. I. Hai, Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes, Bioresour Technol., 139, 363-374 (2013).   DOI
36 A. Khoshmanesh, B. T. Hart, A. Duncan, and R. Beckett, Luxury uptake of phosphorus by sediment bacteria, Water Res., 36, 774-778 (2002).   DOI
37 T. Horvat, Z. Vidakovic-Cifrek, V. Orescanin, M. Tkalec, and B. Pevalek-Kozlina, Toxicity assessment of heavy metal mixtures by Lemna minor L., Sci. Total Environ., 384, 229-238 (2007).   DOI
38 G. V. Levin and J. Sharpiro, Metabolic uptake of phosphorus by wastewater organics, Water Pollut. Control Fed., 37, 800-821 (1965).
39 C. P. L. Grady Jr, C. L. Henry, and G. T. Daigger, Biological Wastewater Treatment, 2nd Ed., 104-107, Marcel Dekker, USA (1999).
40 R. W. Herschy, Ecological threat to lakes and reservoirs, Encyclopedia of Lakes and Reservoirs, 233-234, Springer Netherlands, Dordrecht (2012).
41 A. A. Otitoloju, Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula (L.), Ecotox. Environ. Safe., 53, 404-415 (2002).   DOI
42 N. Alia, K. Sardar, M. Said, K. Salma, A. Sadia, S. Sadaf, and S. Miklas. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment, J. Environ. Res., 12 (7), 7400-7416 (2015).
43 H. J. Kim, S. E. Lee, H. K. Hong, D. H. Kim, J. W. An, J. S. Choi, J. H. Nam, M. S. Lee, S. H. Woo, and K. Y. Chung, Phosphorus removal characteristics by bacteria isolated from industrial wastewater, Korean J. Environ. Agri., 31, 185-191 (2012).   DOI
44 J. L. Barnard, Biological denitrification, Pollut. Control Fed., 72, 705-719 (1973).
45 T. Mino, Y. Tsuzuki, and T. Matsuo, Effect of Phosphorus Accumulation on Acetate Metabolism in the Biological Phosphorus Removal Process, IAWPRC, United Kingdom, 27-38 (1987).
46 T. Mino, M. C. M. Van Loosdrecht, and J. J. Heijnen, Microbiology and biochemistry of the enhanced biological phosphorus removal process, Water Res., 32, 3193-3207 (1998).   DOI
47 M. C. Wentzel, P. L. Dold, G. A. Ekama, and G. R. Marais, Enhanced polyphosphate organism cultures in activated sludge systems, Part III: Kinetic model, Water Sci. Technol., 15, 89-102 (1989).
48 T. George, L. B. Franklin, and H. D. Stensel, Wastewater Engeineering : Treatment and Reuse, 4th Ed., McGraw-Hill, USA (2004).
49 K. S. Kim, G. T. Seo, K. H. Lee, and N. J. kim, Comparison of biological phosphorus removal characteristics between A/O and A2/O process, J. Korean Soc. Water Environ., 18, 123-130 (2002).
50 H. J. Kim, R. B. Yoo, S. S. Han, S. H. Woo, M. S. Lee, K. T. Baek, and K. Y. Chung. Effect of the various heavy metals on the growth and phosphorus(P) removal capacity of the phosphorus accumulating microorganism (Pseudomonas sp.), Korean J. Environ. Agri., 29, 189-196 (2010).   DOI
51 R. B. Yoo, H. J. Kim, S. E. Lee, M. S. Lee, S. H. Woo, J. S. Choi, K. T. Baek, and K. Y. Chung, Effects of environmental factors and heavy metals on the growth and phosphorus removal of Alcaligenes sp., Korean J. Environ. Agri., 30, 216-222 (2011).   DOI
52 C. Zafiri, M. Kornaros, and G. Lyberatos, Kinetic modeling of biological phosphorus removal with a pure culture of Acinetobacter sp. under aerobic, anaerobic, and transient operating conditions, Water Res., 33, 2769-2788 (1999).   DOI
53 M. Asami, N. Suzuki, and J. Nakanishi, Aquatic toxicity emission from Tokyo: Wastewater measured using marine luminescent bacterium, Photobacterium Phosphoreum, Water Sci. Tech., 33, 121-128 (1996).   DOI
54 P. Izadi, P. Izadi, and A. Eldyasti, Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: A review, Rev. Environ. Sci. Biotechnol., 19, 561-593 (2020).   DOI
55 Y. Wang, J. Li, W. Jia, N. Wang, H. Wang, S. Zhang, and G. Chen, Enhanced nitrogen and phosphorus removal in the A2/O process by hydrolysis and acidification of primary sludge, Desalin. Water Treat., 52(25-27), 5144-5151 (2014).   DOI
56 Y. Chen, B. Li, L. Ye, and Y. Peng, The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems, Biochem. Eng. J., 93, 235-242 (2015).   DOI