Browse > Article
http://dx.doi.org/10.14478/ace.2020.1030

Catalytic Application of Metal-Organic Frameworks for Chemical Fixation of CO2 into Cyclic Carbonate  

Ji, Hoon (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology)
Naveen, Kanagaraj (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology)
Kim, Dongwoo (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology)
Cho, Deug-Hee (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology)
Publication Information
Applied Chemistry for Engineering / v.31, no.3, 2020 , pp. 258-266 More about this Journal
Abstract
The chemical fixation of CO2 into cyclic carbonates is considered to be one of the most promising way to alleviate global warming and produce fine chemicals. In this work, the catalytic applicability of metal-organic frameworks (MOFs) as porous crystalline materials for the synthesis of five-membered cyclic carbonate from CO2 and epoxides was reviewed. In addition, we have briefly classified the materials based on their different structural features and compositions. The studies revealed that MOFs exhibited good catalytic performance towards cyclic carbonate synthesis because of the synergistic effect between the acid sites of MOFs and nucleophile. Moreover, the effect of structure of designed MOFs and mechanism for the cycloaddition of CO2 were suggested.
Keywords
$CO_2$; Metal-organic framework; Cycloaddition; Synergistic effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, and R. Q. Snurr, Computation-Ready, Experimental metal-organic frameworks: A tool to enable high-throughput screening of nanoporous crystals, Chem. Mater., 26(21), 6185-6192 (2014).   DOI
2 P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward, and D. Fairen-Jimenez, Development of a cambridge structural database subset: A collection of metal-rganic frameworks for past, present, and future, Chem. Mater., 29(7), 2618-2625 (2017).   DOI
3 J. Liang, Y. B. Huang, and R. Cao, Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates, Coord. Chem. Rev., 378, 32-65 (2019).   DOI
4 A. Pramanik, S. Abbina, and G. Das, Molecular, supramolecular structure and catalytic activity of transition metal complexes of phenoxy acetic acid derivatives, Polyhedron, 26, 5225-5234 (2007).   DOI
5 D. Dang, P. Wu, C. He, Z. Xie, and C. Duan, Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis, J. Am. Chem. Soc., 132, 14321-14323 (2010).   DOI
6 P. Horcajada, S. Surble, C. Serre, D. Y. Hong, Y. K. Seo, J. S. Chang, J. M. Greneche, I. Margiolaki, and G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chem. Commun., 27, 2820-2822 (2007).   DOI
7 A. Henschel, K. Gedrich, R. Kraehnert, and S. Kaskel, Catalytic properties of MIL-101, Chem. Commun., 35, 4192-4194 (2008).
8 K. Schlichte, T. Kratzke, and S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound $Cu_3(BTC)_2$, Micro. Meso. Mater., 73, 81-88 (2004).   DOI
9 A. Dhakshinamoorthy, Z. Li, and H. Garcia, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47, 8134-8172 (2018).   DOI
10 F. Vermoortele, M. Vandichel, B. V. Voorde, R. Ameloot, M. Waroquier, V. V. Speybroeck, and D. E. Vos, Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks, Angew. Chem. Int. Ed., 51, 4887-4890 (2012).   DOI
11 Y. Kishimoto and I. Ogawa, Amine-catalyzed, one-pot coproduction of dialkyl carbonates and 1,2-diols from epoxides, alcohols, and carbon dioxide, Ind. Eng. Chem. Res., 43, 8155-8162 (2004).   DOI
12 B. Chen, Z. Yang, Y. Zhua, and Y. Xia, Zeolitic imidazolate frame work materials: Recent progress in synthesis and applications, J. Mater. Chem. A, 2, 16811-16831 (2014).   DOI
13 J. W. Huang and M. Shi, Chemical fixation of carbon dioxide by $NaI/PPh_3/PhOH$, J. Org. Chem., 68, 6705-6709 (2003).   DOI
14 J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, and B. Han, MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and $CO_2$ under mild conditions, Green Chem., 11, 1031-1036 (2009).   DOI
15 D. A. Yang, H. Y. Cho, J. Kim, S. T. Yang, and W. S. Ahn, $CO_2$ capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy Environ. Sci., 5, 6465-6473 (2012).   DOI
16 R. Roshith, J. Tharun, B. Robin, G. Y. Hwang, C. K. A. Cherian, D. W. Kim, and D. W. Park, A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates, Appl. Catal. B:Environ., 182, 562-569 (2016).   DOI
17 C. M. Miralda, E. E. Macias, M. Zhu, P. Ratnasamy, and M. A. Carreon, Zeolitic imidazole framework-8 catalysts in the conversion of $CO_2$ to chloropropene carbonate, ACS Catal., 2, 180-183 (2012).   DOI
18 N. Sharma, S. S. Dhankhar, and C. M. Nagaraja, Environment-friendly, co-catalyst- and solvent free fixation of $CO_2$ using an ionic zinc(II)-porphyrin complex immobilized in porous metal-organic frameworks, Sustain. Energ. Fuels, 3, 2977-2982 (2019).   DOI
19 L. Yang, L. Yu, G. Diao, M. Sun, G. Cheng, and S. Chen, Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst for chemical fixation of carbon dioxide, J. Mol. Catal. A, 392, 278-283 (2014).   DOI
20 T. Jose, Y. Hwang, D. W. Kim, M. I. Kim, and D. W. Park, Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl etherm, Catal. Today, 245, 61-67 (2015).   DOI
21 M. Ding and H. Jiang, Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for $CO_2$ capture and conversion, ACS Catal., 8, 3194-3201 (2018).   DOI
22 Z. Wang and S. M. Cohen, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Rev., 38, 1315-1329 (2009).   DOI
23 J. Liang, R. P. Chen, X. Y. Wang, T. T. Liu, X. S. Wang, Y. B. Huang, and R. Cao, Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides, Chem. Sci., 8, 1570-1575 (2017).   DOI
24 T. Sakakura, J. C. Choi, and H. Yasuda, Transformation of carbon dioxide, Chem. Rev., 107(6), 2365-2387 (2007).   DOI
25 D. G. Gavin and C. J. Bower, Options for reducing greenhouse gases in the global environment, Proc. of the JAPAN-EC, Japan (1991).
26 S. Inoue, T. Tsuruta, and H. Koinuma, Copolymerzation of carbon dioxide and epoxide, J. Polym. Sci. Polym. Lett., 7(4), 287-292 (1969).   DOI
27 C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, and O. M. Yaghi, The chemistry of metal-organic frameworks for $CO_2$ capture, regeneration and conversion, Nat. Rev. Mats., 2, 17045 (2017).   DOI
28 S. H. Cho, B. C. Bai, H. R. Yu, and Y. S. Lee, Carbon capture and $CO_2/CH_4$ separation technique using porous carbon materials, Appl. Chem. Eng., 22(5), 343-347 (2011).
29 S. Chu, Carbon capture and sequestration, Science, 325(5948), 1599 (2009).   DOI
30 C. Maeda, Y. Miyazaki, and T. Ema, Recent progress in catalytic conversions of carbon dioxide, Catal. Sci. Technol., 6, 1482-1497 (2014).
31 A. A. G. Shaikh and S. Sivaram, Organic carbonates, Chem. Rev., 96(3), 951-976 (1996).   DOI
32 F. K. Jintu, R. Yadagiri, A. S. Palakkal, R. S. Pilla, Y. Gu, Y. Choe, and D. W. Park, Water-tolerant DUT-series metal-organic frameworks: A theoretical-experimental study for the chemical fixation of $CO_2$ and catalytic transfer hydrogenation of ethyl levulinate to $\gamma$-valerolactone, ACS Appl. Mater. Interfaces, 11, 41458-41471 (2019)   DOI
33 C. Federsel, R. Jackstell, and M. Beller, State-of-the-art catalysts for hydrogenation of carbon dioxide, Angew. Chem. Int. Ed., 49, 6254-6257 (2010).   DOI
34 U. Romano, Dimethyl carbonate and its production technology, Chim. Ind., 75, 303-306 (1993).
35 K. Weissermel and H. J. Arpe, Industral Organic Chemestry, 3rd ed., Wiley-VCH, New York (1997).
36 S. Zhang, J. Sun, X. Zhang, J. Xun, Q. Miao, and J. Wang, Ionic liquid-based green processes for energy production, Chem. Soc. Rev., 43, 7838-7869 (2014).   DOI
37 D. W. Kim, R. Roshan, J. Tharun, K. A. Cherian, and D. W. Park, Catalytic applications of immobilized ionic liquids for synthesis of cyclic carbonates from carbon dioxide and epoxides, Korean J. Chem. Eng., 30(11), 1973-1984 (2013).   DOI
38 M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, and F. E. Kuhn, Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge?, Angew. Chem. Int. Ed., 50, 8510-8537 (2011).   DOI
39 G. Fiorani, W. Guo, and A. W. Kleij, Sustainable conversion of carbon dioxide: The advent of organocatalysis, Green Chem., 17, 1375-1389 (2015).   DOI