Browse > Article
http://dx.doi.org/10.14478/ace.2020.1017

Recent Trend in Bioscavengers for Inactivation of Toxic Organophosphorus Compounds  

Kim, Heejeong (Department of Physics and Chemistry, Korea Military Academy)
Jeong, Keunhong (Department of Physics and Chemistry, Korea Military Academy)
Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy)
Publication Information
Applied Chemistry for Engineering / v.31, no.2, 2020 , pp. 125-137 More about this Journal
Abstract
In recent years, toxic organophosphorus compounds (OPs) have been used for civilians, becoming a great threat to the world. Alternative to the current treatment policy unpredictable for any prevention, researches on bioscavenger as an improved treatment have been actively conducted. Bioscavengers refer to proteins and enzymes that prevent intoxication by inactivating or binding toxic OPs before they reaches the target. In particular, extensive efforts have been made to develop catalytic bioscavengers that quickly detoxify OPs even with a small dose of the protein by performing multiple binding and hydrolysis processes with OPs. This review introduces the latest studies and results for developing catalytic bioscavengers using molecular evolution and protein engineering techniques. We will briefly present some of the remaining challenges on developing enzymes into clinically approved drugs.
Keywords
Organophosphorus compounds (OPs); Bioscavengers; Chemical Warfare Agent (CWA); Directed evolution; Protein engineering techniques;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Mackness, M. Mackness, M. Aviram, and G. Paragh (eds.). The Paraoxonases: Their Role In Disease Development And Xenobiotic Metabolism, 3-32, Springer Science & Business Media (2007).
2 L. Briseno-Roa, J. Hill, S. Notman, D. Sellers, A. P. Smith, C. M. Timperley, J. Wetherell, N. H. Williams, G. R. Williams, A. R. Fersht, and A. D. Griffiths, Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents, J. Med. Chem., 49, 246-255 (2006).   DOI
3 M. Goldsmith, N. Aggarwal, Y. Ashani, H. Jubran, P. J. Greisen, S. Ovchinnikov, H. Leader, D. Baker, J. L. Sussman, A. Goldenzweig, S. J. Fleishman, and D. S. Tawfik, Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers, Protein Eng., 30, 333-345 (2017).   DOI
4 T. Imai and K. Ohura, The role of intestinal carboxylesterase in the oral absorption of prodrugs, Curr. Drug Metab., 11, 793-805 (2010).   DOI
5 U. T. Bornscheuer, Microbial carboxylesterases: Classification, properties and application in biocatalysis, FEMS Microbiol. Rev., 26, 73-81 (2002).   DOI
6 T. Imai, Human carboxylesterase isozymes: Catalytic properties and rational drug design, Drug Metab. Pharm., 21, 173-185 (2006).   DOI
7 M. J. Hatfield, R. A. Umans, J. L. Hyatt, C. C. Edwards, M. Wierdl, L. Tsurkan, M. R. Taylor, and P. M. Potter, Carboxylesterases: General detoxifying enzymes, Chem. Biol. Interact., 259, 327-331 (2016).   DOI
8 T. Satoh and M. Hosokawa, Molecular aspects of carboxylesterase isoforms in comparison with other esterases, Toxicol. Lett., 82, 439-445 (1995).   DOI
9 G. Amitai, L. Gaidukov, R. Adani, S. Yishay, G. Yacov, M. Kushnir, S. Teitlboim, M. Lindenbaum, P. Bel, O. Khersonsky, and D. S. Tawfik, Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase, FEBS J., 273, 1906-1919 (2006).   DOI
10 D. G. Mata, P. E. Rezk, P. Sabnekar, D. M. Cerasoli, and N. Chilukuri, Investigation of evolved paraoxonase-1 variants for prevention of organophosphorous pesticide compound intoxication, J. Pharmacol. Exp. Ther., 349, 549-558 (2014).   DOI
11 S. D. Kirby, J. R. Norris, J. R. Smith, B. J. Bahnson, and D. M. Cerasoli, Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents, Chem. Biol. Interact., 203, 181-185 (2013).   DOI
12 T. K. Ng, L. R. Gahan, G. Schenk, and D. L. Ollis, Altering the substrate specificity of methyl parathion hydrolase with directed evolution, Arch. Biochem. Biophys., 573, 59-68 (2015).   DOI
13 P. E. Rezk, P. Zdenka, P. Sabnekar, T. Kajih, D. G. Mata, C. Wrobel, D. M. Cerasoli, and N. Chilukuri, An in vitro and in vivo evaluation of the efficacy of recombinant human liver prolidase as a catalytic bioscavenger of chemical warfare nerve agents, Drug Chem. Toxicol., 38, 37-43 (2014).   DOI
14 H. Liu, J. J. Zhang, S. J. Wang, X. E. Zhang, and N. Y. Zhou, Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3, Biochem. Biophys. Res. Commun., 334, 1107-1114 (2005).   DOI
15 Y. J. Dong, M. Bartlam, L. Sun, Y. F. Zhou, Z. P. Zhang, C. G. Zhang, Z. Rao, and X. E. Zhang, Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3, J. Mol. Biol., 353, 655-663 (2005).   DOI
16 A. Ozgur and Y. Tutar, Therapeutic proteins: A to Z, Protein Pept. Lett., 20, 1365-1372 (2013).   DOI
17 H. D. Lagasse, A. Alexaki, V. L. Simhadri, N. H. Katagiri, W. Jankowski, Z. E. Sauna, and C. Kimchi-Sarfaty, Recent advances in (therapeutic protein) drug development, F1000Res., 6, 113 (2017).   DOI
18 J. L. Sussman and I. Silman, Acetylcholinesterase: Structure and use as a model for specific cation-protein interactions, Curr. Opin. Struct. Biol., 2, 721-729 (1992).   DOI
19 O. Lockridge, C. F. Bartels, T. A. Vaughan, C. K. Wong, S. E. Norton, and L. L. Johnson, Complete amino acid sequence of human serum cholinesterase, J. Biol. Chem., 262, 549-557 (1987).   DOI
20 A. C. Hemmert, T. C. Otto, M. Wierdl, C. C. Edwards, C. D. Fleming, M. MacDonald, J. R. Cashman, P. M. Potter, D. M. Cerasoli, and M. R. Redinbo, Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin, Mol. Pharmacol., 77, 508-516 (2010).   DOI
21 P. Masson and S. V. Lushchekina, Emergence of catalytic bioscavengers against organophosphorus agents, Chem. Biol. Interact., 259, 319-326 (2016).   DOI
22 C. M. Theriot and A. M. Grunden, Hydrolysis of organophosphorus compounds by microbial enzymes, Appl. Microbiol. Biotechnol., 89, 35-43 (2011).   DOI
23 W. W. Mulbry, J. S. Karns, P. C. Kearney, J. O. Nelson, C. S. McDaniel, and J. R. Wild, Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta, Appl. Environ. Microbiol., 51, 926-930 (1986).   DOI
24 D. P. Dumas, S. R. Caldwell, J. R. Wild, and F. M. Raushel, Purification and properties of the phosphotriesterase from Pseudomonas diminuta, J. Biol. Chem., 264, 19659-19665 (1989).   DOI
25 E. Ghanem and F. M. Raushel, Detoxification of organophosphate nerve agents by bacterial phosphotriesterase, Toxicol. Appl. Pharmacol., 207, 459-470 (2005).   DOI
26 P. Masson, Handbook of Toxicology of Chemical Warfare Agents, 2nd ed., 1107-1123, Elsevier, Kentucky, USA (2015).
27 D. P. Dumas, H. D. Durst, and W. G. Landis, Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta, Arch. Biochem. Biophys., 277, 155-159 (1990).   DOI
28 P. Masson, P. L. Fortier, C. Albaret, M. T. Froment, C. F. Bartels, and O. Lockridge, Aging of di-isopropyl-phosphorylated human butyrylcholinesterase, Biochem. J., 327, 601-607 (1997).   DOI
29 M. M. Benning, J. M. Kuo, F. M. Raushel, and H. M. Holden, Three-dimensional structure of phosphotriesterase: An enzyme capable of detoxifying organophosphate nerve agents, Biochemistry, 33, 15001-15007 (1994).   DOI
30 A. C. Hemmert, T. C. Otto, R. A. Chica, M. Wierdl, J. S. Edwards, S. L. Lewis, C. C. Edwards, L. Tsurkan, C. L. Cadieux, S. A. Kasten, J. R. Cashman, S. L. Mayo, P. M. Potter, D. M. Cerasoli, and M. R. Redinbo, Nerve agent hydrolysis activity designed into a human drug metabolism enzyme, PLoS One, 6, e17441 (2011).   DOI
31 P. M. Legler, S. M. Boisvert, J. R. Compton, and C. B. Millard, Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase, Front Chem., 2, 46 (2014).
32 F. Soto-Mancera, J. M. Arellano, and M. G. Albendin, Carboxylesterase in Sparus aurata: characterisation and sensitivity to organophosphorus pesticides and pharmaceutical products, Ecol. Indic., 109, 105603 (2020).   DOI
33 V. V. Frolkis, V. V. Bezrukov, Y. K. Duplenko, I. V. Shchegoleva, V. G. Shevtchuk, and N. S. Verkhratsky, Acetyl- choline metabolism and cholinergic regulation of functions in aging, Gerontology, 19, 45-57 (1973).   DOI
34 C. Roodveldt and D. S. Tawfik, Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state, Protein Eng. Des. Select., 18, 51-58 (2005).   DOI
35 F. Wore, H. Thiermann, L. Szinicz, and P. Eyer, Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes, Biochem. Pharmacol., 68, 2237-2248 (2004).   DOI
36 K. G. McGarry, K. E. Schill, T. P. Winters, E. E. Lemmon, C. L. Sabourin, J. A. Harvilchuck, and R. A. Moyer, Characterization of cholinesterases from multiple large animal species for medical countermeasure development against chemical warfare nerve agents, Toxicol. Sci., 174, 124-132 (2019).   DOI
37 Z. Chen, R. Newcomb, E. Forbes, J. McKenzie, and P. Batterham, The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina, Insect Biochem. Mol. Biol., 31, 805-816 (2001).   DOI
38 V. K. Rastogi, J. J. Defranck, and T. C. Cheng, Enzymatic hydrolysis of Russian-VX by organophosphorus hydrolase, Biochem. Biophys. Res. Commun., 241, 294-296 (1997).   DOI
39 A. D. Griffiths and D. S. Tawfik, Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization, EMBO J., 22, 24-35 (2003).   DOI
40 P. Menozzi, M. Shi, A. Lougarre, Z. H. Tang, and D. Fournier, Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations, BMC Evol. Biol., 4, 4 (2004).   DOI
41 Y. Ashani, Z. Radic, I. Tsigelny, D. C. Vellom, N. A. Pickering, D. M. Quinn, B. P. Doctor, and P. Taylor, Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono-and bisquaternary oximes, J. Biol. Chem., 270, 6370-6380 (1995).   DOI
42 L. Wong, Z. Radic, R. J. Bruggemann, N. Hosea, H. A. Berman, and P. Taylor, Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis, Biochemistry, 39, 5750-5757 (2000).   DOI
43 T. Kucukkilinc, R. Cochran, J. Kalisiak, E. Garcia, A. Valle, G. Amitai, Z. Radica, and P. Taylor, Investigating the structural influence of surface mutations on acetylcholinesterase inhibition by organophosphorus compounds and oxime reactivation, Chem. Biol. Interact., 187, 238-240 (2010).   DOI
44 P. Jacquet, J. Hiblot, D. Daude, C. Bergonzi, G. Gotthard, N. Armstrong, E. Chabriere, and M. Elias, Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase, Sci. Rep., 7, 1-15 (2017).   DOI
45 C. M. H. Cho, A. Mulchandani, and W. Chen, Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents, Appl. Environ. Microbiol., 68, 2026-2030 (2002).   DOI
46 C. M. Hill, W. S. Li, J. B. Thoden, H. M. Holden, and F. M. Raushel, Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site, J. Am. Chem. Soc., 125, 8990-8991 (2003).   DOI
47 I. Cherny, P. Greisen, Y. Ashani, S. D. Khare, G. Oberdorfer, H. Leader, D. Baker, and D. S. Tawfik, Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries, ACS Chem. Biol., 8, 2394-2403 (2013).   DOI
48 T. Wille, K. Neumaier, M. Koller, C. Ehinger, N. Aggarwal, Y. Ashani, M. Goldsmith, J. L. Sussman, D. S. Tawfik, H. Thiermann, and F. Worek, Single treatment of VX poisoned guinea pigs with the phosphotriesterase mutant C23AL: Intraosseous versus intravenous injection, Toxicol. Lett., 258, 198-206 (2016).   DOI
49 O. Mazor, O. Cohen, C. Kronman, L. Raveh, D. Stein, A. Ordentlich, and A. Shafferman, Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase, Mol. Pharmacol., 74, 755-763 (2008).   DOI
50 M. Katalinic, G. Sinko, M. N. Hrvat, T. Zorbaz, A. Bosak, and Z. Kovarik, Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations, Toxicology, 406-407, 104-113 (2018).   DOI
51 C. Kronman, O. Cohen, O. Mazor, A. Ordentlich, L. Raveh, B. Velan, and A. Shafferman, Next generation OP-bioscavengers: A circulatory long-lived 4-PEG hypolysine mutant of F338A-HuAChE with optimal pharmacokinetics and pseudo-catalytic characteristics, Chem. Biol. Interact., 187, 253-258 (2010).   DOI
52 L. Raveh, J. Grunwald, D. Marcus, Y. Papier, E. Cohen, and Y. Ashani, Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity, Biochem. Pharmacol., 45, 2465-2474 (1993).   DOI
53 N. M. Hrvat, S. Zunec, P. Taylor, Z. Radic, and Z. Kovarik, HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants, Chem. Biol. Interact., 259, 148-153 (2016).   DOI
54 Z. Kovarik, N. M. Hrvat, J. Kalisiak, M. Katalinic, R. K. Sit, T. Zorbaz, Z. Radic, V. V. Fokin, K. B. Sharpless, and P. Taylor, Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase, Toxicol. Appl. Pharmacol., 372, 40-46 (2019).   DOI
55 J. Massoulie, J. Sussman, S. Bon, and I. Silman, Structure and function of acetylcholinesterase and butyrylcholinesterase, Brain Res., 98, 139-146 (1993).   DOI
56 K. A. Gonzalez, E. H. Viana, and R. V. Duhalt, Enzymatic detoxification of organophosphorus pesticides and related toxicants, J. Pestic. Sci., 43, 1-9 (2018).
57 F. Ely, K. S. Hadler, N. Mitic, L. R. Gahan, D. L. Ollis, N. M. Plugis, M. T. Russo, J. A. Larrabee, and G. Schenk, Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA), J. Biol. Inorg. Chem., 16, 777-787 (2011).   DOI
58 S. B. Bird, T. D. Sutherland, C. Gresham, J. Oakeshott, C. Scott, and M. Eddleston, OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticides, Toxicology, 247, 88-92 (2008).   DOI
59 V. P. Chen, Y. Gao, L. Geng, and S. Brimijoin, Butyrylcholinesterase gene transfer in obese mice prevents postdieting body weight rebound by suppressing ghrelin signaling, Proc. Natl. Acad. Sci., 114, 10960-10965 (2017).   DOI
60 S. V. Lushchekina, B. L. Grigorenko, D. I. Morozov, I. V. Polyakov, A. V. Nemukhin, and S. D. Varfolomeev, Modeling of the mechanism of hydrolysis of succinylcholine in the active site of native and modified (Asp70Gly) human butyrylcholinesterase, Russ. Chem. Bull., 59, 55-60 (2010).   DOI
61 Y. Cai, S. Zhou, M. J. Stewart, F. Zheng, and C. G. Zhan, Dimerization of human butyrylcholinesterase expressed in bacterium for development of a thermally stable bioscavenger of organophosphorus compounds, Chem. Biol. Interact., 310, 108756 (2019).   DOI
62 J. Bzdrenga, J. Hiblot, G. Gotthard, C. Champion, M. Elias, and E. Chabriere, SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase, BMC Research Notes, 7, 333 (2014).   DOI
63 J. Hiblot, G. Gotthard, E. Chabriere, and M. Elias, Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus, PLoS One, 7, e47028 (2012).   DOI
64 J. Hiblot, G. Gotthard, E. Chabriere, and M. Elias, Characterisation of the organophosphate hydrolase catalytic activity of SsoPox, Sci. Rep., 2, 779 (2012).   DOI
65 M. M. Meier, C. Rajendran, C. Malisi, N. G. Fox, C. Xu, S. Schlee, D. P. Barondeau, B. Hocker, R. Sterner, and F. M. Raushel, Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template, J. Am. Chem. Soc., 135, 11670-11677 (2013).   DOI
66 L. Merone, L. Mandrich, E. Porzio, M. Rossi, S. Muller, G. Reiter, F. Worek, and G. Manco, Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase, Bioresour. Technol., 101, 9204-9212 (2010).   DOI
67 E. I. Scharff, J. Koepke, G. Fritzsch, C. Lucke, and H. Ruterjans, Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris, Structure, 9, 493-502 (2001).   DOI
68 P. N. Durrington, B. Mackness, and M. I. Mackness, Paraoxonase and atherosclerosis, Arter. Thromb. Vasc. Biol., 21, 473-480 (2001).   DOI
69 B. Mackness, P. N. Durrington, and M. I. Mackness, Human serum paraoxonase, Gen. Pharmacol., 31, 329-336 (1998).   DOI
70 M. Aviram, M. Rosenblat, C. L. Bisgaier, R. S. Newton, S. L. Primo-Parmo, and B. N. La Du, Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase, J. Clin. Invest., 101, 1581-1590 (1998).   DOI
71 H. G. Davies, R. J. Richter, M. Keifer, C. A. Broomfield, J. Sowalla, and C. E. Furlong, The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin, Nat. Genet., 14, 334-336 (1996).   DOI
72 R. C. Stevens, S. M. Suzuki, T. B. Cole, S. S. Park, R. J. Richter, and C. E. Furlong, Engineered recombinant human paraoxonase 1 (rHuPON1) purified from Escherichia coli protects against organophosphate poisoning, Proc. Natl. Acad. Sci., 105, 12780-12784 (2008).   DOI
73 L. G. Costa, G. Giordano, T. B. Cole, J. Marsillach, and C. E. Furlong, Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity, Toxicology, 307, 115-122 (2013).   DOI
74 G. Kaur, A. K. Jain, and S. Singh, CYP/PON genetic variations as determinant of organophosphate pesticides toxicity, J. Genet., 96, 187-201 (2017).   DOI
75 M. W. Peterson, S. Z. Fairchild, T. C. Otto, M. Mohtashemi, D. M. Cerasoli, and W. E. Chang, VX hydrolysis by human serum paraoxonase 1: A comparison of experimental and computational results, PLoS One, 6, e20335 (2011).   DOI
76 D. G. Mata, P. Sabnekar, C. A. Watson, P. E. Rezk, and N. Chilukuri, Assessing the stoichiometric efficacy of mammalian expressed paraoxonase-1 variant I-F11 to afford protection against G-type nerve agents, Chem. Biol. Interact., 259, 233-241 (2016).   DOI
77 J. Newmark, Seminars in Neurology, 24, 185-196, Thieme Medical Publishers, Inc., New York, USA (2004).   DOI
78 H. Allahyari and A. M. Latifi, Diisopropyl-fluorophosphatase as a catalytic bioscavenger, J. Appl. Biotechnol. Rep., 3, 477-482 (2016).
79 R. Webster, E. Didier, P. Harris, N. Siegel, J. Stadler, L. Tilbury, and D. Smith, PEGylated Proteins: Evaluation of their safety in the absence of definitive metabolism studies, Drug Metab. Dispos., 35, 9-16 (2006).
80 I. Koplovitz, S. M. Schulz, R. F. Railer, M. Sigler, and R. B. Lee, Effect of atropine and diazepam on the efficacy of oxime treatment of nerve agent intoxication, J. Med. CBR. Def., 5, 1-15 (2007).
81 P. Taylor, Anticholinesterase agents, In: L. L. Brunton, B. A. Chabner, B. C. Knollmann (eds.), Goodman & Gilman's the Pharmacological Basis of Therapeutics, 239-254, McGraw-Hill, New York, USA (2011).
82 M. Trovaslet-Leroy, L. Musilova, F. Renault, X. Brazzolotto, J. Misik, L. Novotny, M. T. Froment, E. Gillon, M. Loiodice, L. Verdier, and P. Masson, Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents, Toxicol. Lett., 206, 14-23 (2011).   DOI
83 F. Nachon, X.Brazzolotto, M. Trovaslet, and P. Masson, Progress in the development of enzyme-based nerve agent bioscavengers, Chem. Biol. Interact., 206, 536-544 (2013).   DOI
84 I. Horne, T. D. Sutherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott, Identification of an opd (Organophosphate Degradation) gene in an agrobacterium isolate, Appl. Environ. Microbiol., 68, 3371-3376 (2002).   DOI
85 S. Chakraborti and B. J. Bahnson, Crystal structure of human senescence marker protein 30: Insights linking structural, enzymatic, and physiological functions, Biochemistry, 49, 3436-3444 (2010).   DOI
86 N. K. Vyas, A. Nickitenko, V. K. Rastogi, S. S. Shah, and F. A. Quiocho, Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase, Biochemistry, 49, 547-559 (2010).   DOI
87 R. C. diTargiani, L. Chandrasekaran, T. Belinskaya, and A. Saxena, In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity, Chem. Biol. Interact., 187, 349-354 (2010).   DOI
88 M. Melzer, A. Heidenreich, F. Dorandeu, J. Gab, K. Kehe, H. Thiermann, T. Letzel, and M. M. Blum, In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase), Drug Test. Anal., 4, 262-270 (2011).   DOI
89 D. Zhou, D. Yin, F. Xiao, and J. Hao, Expressions of senescence-associated ${\beta}$-galactosidase and senescence marker protein-30 are associated with lens epithelial cell apoptosis, Med. Sci. Monit., 21, 3728-3735 (2015).   DOI
90 J. S. Little, C. A. Broomfield, M. K. Fox-Talbot, L. J. Boucher, B. MacIver, and D. E. Lenz, Partial characterization of an enzyme that hydrolyzes sarin, soman, tabun, and diisopropyl phosphorofluoridate (DFP), Biochem. Pharmacol., 38, 23-29 (1989).   DOI
91 M. S. Choi, A. Saxena, and N. Chilukuri, A strategy for the production of soluble human senescence marker protein-30 in Escherichia coli, Biochem. Biophys. Res. Commun., 393, 509-513 (2010).   DOI
92 T. C. Cheng, S. Harvey, and A. N. Stroup, Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina, Appl. Environ. Microbiol., 59, 3138-3140 (1993).   DOI
93 S. M. Hodgins, S. A. Kasten, J. Harrison, T. C. Otto, Z. P. Oliver, P. Rezk, T. E. Reeves, N. Chilukuri, and D. M. Cerasoli, Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection, Chem. Biol. Interact., 203, 177-180 (2013).   DOI
94 A. Lupi, R. Tenni, A. Rossi, G. Cetta, and A. Forlino, Human prolidase and prolidase deficiency: An overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations, Amino Acids, 35, 739-752 (2008).   DOI
95 C. Zhongli, L. Shunpeng, and F. Guoping, Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene, Appl. Environ. Microbiol., 67, 4922-4925 (2001).   DOI
96 M. Goldsmith and Y. Ashani, Catalytic bioscavengers as countermeasures against organophosphate nerve agents, Chem. Biol. Interact., 292, 50-64 (2018).   DOI
97 M. Valiyaveettil, Y. Alamneh, P. Rezk, L. Biggemann, M. W. Perkins, A. M. Sciuto, B. P. Doctor, and M. P. Nambiar, Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs, Biochem. Pharmacol., 81, 800-809 (2011).   DOI
98 M. Valiyaveettil, Y. Alamneh, P. Rezk, M. W. Perkins, A. M. Sciuto, B. P. Doctor, and M. P. Nambiar, Recombinant paraoxonase 1 protects against sarin and soman toxicity following microinstillation inhalation exposure in guinea pigs, Toxicol. Lett., 202, 203-208 (2011).   DOI
99 A. Aharoni, L. Gaidukov, S. Yagur, L. Toker, I. Silman, and D. S. Tawfik, Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization, Proc. Natl. Acad. Sci., 101, 482-487 (2003).   DOI
100 M. Harel, A. Aharoni, L. Gaidukov, B. Brumshtein, O. Khersonsky, R. Meged, H. Dvir, R. B. Ravelli, A. McCarthy, L. Toker, I. Silman, J. Sussman, and D. S. Tawfik, Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes, Nat. Struct. Biol., 11, 412-419 (2004).   DOI
101 R. D. Gupta, M. Goldsmith, Y. Ashani, Y. Simo, G. Mullokandov, H. Bar, M. B. David, H. Leader, R. Margalit, I. Silman, J. L. Sussman, and D. S. Tawfik, Directed evolution of hydrolases for prevention of G-type nerve agent intoxication, Nat. Chem. Biol., 7, 120-125 (2011).   DOI
102 J. Estevez and E. Vilanova, Model equations for the kinetics of covalent irreversible enzyme inhibition and spontaneous reactivation: Esterases and organophosphorus compounds, Crit. Rev. Toxicol., 39, 427-448 (2009).   DOI
103 J. Descotes, Immunotoxicology of Drugs and Chemicals: An Experimental and Clinical Approach, 2-18, Elsevier, Amsterdam, Netherlands (2004).
104 N. Aurbek, H. Thiermann, F. Eyer, P. Eyer, and F. Worek, Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: A kinetic analysis, Toxicology, 259, 133-139 (2009).   DOI
105 K. G. McGarry, R. F. Lalisse, R. A. Moyer, K. M. Johnson, A. M. Tallan, T. P. Winters, J. E. Taris, C. A. McElroy, E. E. Lemmon, H. S. Shafaat, Y. Fan, A. Deal, S. C. Marguet, J. A. Harvilchuck, C. M. Hadad, and D. W. Wood, A novel, modified human butyrylcholinesterase catalytically degrades the chemical warfare nerve agent, sarin, Toxicol. Sci., 174, 133-146 (2019).   DOI
106 W. N. Aldridge, Organophosphorus compounds: Molecular basis for their biological properties, Sci. Prog., 67, 138-139 (1981).
107 R. L. Maynard and F. W. Beswick, Clinical and Experimental Toxicology of Organophosphates and Carbamates, 373-385, Elsevier, Oxford, UK (1992).
108 M. Goldsmith, Y. Ashani, Y. Simo, M. B. David, H. Leader, I. Silman, J. L. Sussman, and D. S. Tawfik, Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification, Chem. Biol., 19, 456-466 (2012).   DOI
109 T. C. Cheng, S. P. Harvey, and G. L. Chen, Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus neve agents and nucleotide sequence of the enzyme, Appl. Environ. Microbiol., 62, 1636-1641 (1996).   DOI
110 F. Worek, N. Aurbek, T. Wille, P. Eyer, and H. Thiermann, Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: A theoretical approach, J. Enzyme Inhib., 26, 303-308 (2010).
111 G. E. Garcia, A. J. Campbell, J. Olson, D. Moorad-Doctor, and V. I. Morthole, Novel oximes as blood-brain barrier penetrating cholinesterase reactivators, Chem. Biol. Interact., 187, 199-206 (2010).   DOI
112 A. Ruban, B. Mohar, G. Jona, and V. I. Teichberg, Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication, J. Cerebr. Blood. F. Met., 34, 221-227 (2013).
113 F. Worek, T. Seeger, M. Goldsmith, Y. Ashani, H. Leader, J. S. Sussman, D. S. Tawfik, H. Thiermann, and T. Wille, Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro, Arch. Toxicol., 88, 1257-1266 (2014).   DOI
114 M. Goldsmith, Y. Ashani, R. Margalit, A. Nyska, D. Mirelman, and D. S. Tawfik, A new post-intoxication treatment of paraoxon and parathion poisonings using an evolved PON1 variant and recombinant GOT1, Chem. Biol. Interact., 259, 242-251 (2016).   DOI
115 A. Zlotnik, S. E. Gruenbaum, A. A. Artru, I. Rozet, M. Dubilet, S. Tkachov, E. Brotfain, Y. Klin, Y. Shapira, and V. I. Teichberg, The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity, J. Neurosurg. Anesthesiol., 21, 235-241 (2009).   DOI
116 A. Ruban, I. Biton, A. Markovich, and D. Mirelman, MRS of brain metabolite levels demonstrates the ability of scavenging of excess brain glutamate to protect against nerve agent induced seizures, Int. J. Mol. Sci., 16, 3226-3236 (2015).   DOI
117 P. Li, S. Y. Moon, M. A. Guelta, L. Lin, D. A. Gomez-Gualdron, R. Q. Snurr, S. P. Harvey, J. T. Hupp, and O. K. Farha, Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis, ACS Nano, 10, 9174-9182 (2016).   DOI
118 S. P. Harvey, R. M. Leslie, and J. B. Frederic, Hydrolysis and enzymatic degradation of Novichok nerve agents, Heliyon, 6, e03153 (2020).   DOI
119 C. M. Daczkowski, S. D. Pegan, and S. P. Harvey, Engineering the organophosphorus acid anhydrolase enzyme for increased catalytic efficiency and broadened stereospecificity on russian VX, Biochemistry, 54, 6423-6433 (2015).   DOI
120 I. Petrikovics, Long circulating liposomes encapsulating organophosphorus acid Anhydrolase in diisopropylfluorophosphate antagonism, Toxicol. Sci., 57, 16-21 (2000).   DOI
121 G. Zanaboni, K. M. Dyne, A. Rossi, V. Monafo, and G. Cetta, Prolidase deficiency: Biochemical study of erythrocyte and skin fibroblast prolidase activity in italian patients, Haematologica, 79, 13-18 (1994).
122 L. Chandrasekaran, T. Belinskaya, and A. Saxena, In vitro characterization of organophosphorus compound hydrolysis by native and recombinant human prolidase, Toxicology in vitro, 27, 499-506 (2013).   DOI
123 V. Aleti, G. B. Reddy, K. Parikh, P. Arun, and N. Chilukuri, Persistent and high-level expression of human liver prolidase in vivo in mice using adenovirus, Chem. Biol. Interact., 203, 191-195 (2013).   DOI
124 J. G. Clement, D. G. Bailey, H. D. Madill, L. T. Tran, and J. D. Spence, The acetylcholinesterase oxime reactivator HI-6 in man: Pharmacokinetics and tolerability in combination with atropine, Biopharm. Drug Dispos., 16, 415-425 (1995).   DOI
125 G. Mercey, T. Verdelet, G. Saint-Andre, E. Gillon, A. Wagner, R. Baati, L. Jean, F. Nachon, and P. Y. Renard, First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase, Chem. Commun., 47, 5295-5297 (2011).   DOI
126 J. Kalisiak, E. C. Ralph, and J. R. Cashman, Nonquaternary reactivators for organophosphate-inhibited cholinesterases, J. Med. Chem., 55, 465-474 (2011).   DOI
127 M. Katalinic, N. Macek Hrvat, K. Baumann, S. Morasi Pipercic, S. Makaric, S. Tomic, O. Jovic, T. Hrenar, A. Milicevic, D. Jelic, S. Zunec, I. Primozic, and Z. Kovarik, A comprehensive evaluation of novel oximes in creation of butyrylcholinesterase-based nerve agent bioscavengers, Toxicol. Appl. Pharmacol., 310, 195-204 (2016).   DOI
128 D. Josse, O. Lockridge, W. Xie, C. F. Bartels, L. M. Schopfer, and P. Masson, The active site of human paraoxonase (PON1), J. Appl. Toxicol., 21, S7-S11 (2001).   DOI
129 L. G. Costa, R. J. Richter, W. F. Li, T. Cole, M. Guizzetti, and C. E. Furlong, Paraoxonase (PON1) as a biomarker of susceptibility for organophosphate toxicity, Biomarkers, 8, 1-12 (2003).   DOI
130 J. Cowan, C. M. Sinton, A. W. Varley, F. H. Wians, R. W. Haley, and R. S. Munford, Gene therapy to prevent organophosphate intoxication, Toxicol. Appl. Pharmacol., 173, 1-6 (2001).   DOI
131 A. L. Fu, Y. X. Wang, and M. J. Sun, Naked DNA prevents soman intoxication, Biochem. Biophys. Res. Commun., 328, 901-905 (2005).   DOI