Browse > Article
http://dx.doi.org/10.14478/ace.2019.1091

Effective Electrode Structure for the Stability of Alkaline Hydrazine Fuel Cells  

Uhm, Sunghyun (Plant Process Development Center, Institute for Advanced Engineering)
Hong, Sujik (Ertl Center for Electrochemistry and Catalysis, School of Earth Sciences and Environmental Engineering, GIST)
Lee, Jaeyoung (Ertl Center for Electrochemistry and Catalysis, School of Earth Sciences and Environmental Engineering, GIST)
Publication Information
Applied Chemistry for Engineering / v.30, no.6, 2019 , pp. 652-658 More about this Journal
Abstract
Direct hydrazine fuel cells (DHFCs) have been considered to be one of the promising fuel cells because hydrazine as a liquid fuel possesses several advantages such as no emission of CO2, relatively high energy density and catalytic activity over platinum group metal (PGM)-free anode catalysts. Judging from plenty of research works, however, regarding key components such as electrocatalysts as well as their physicochemical properties, it becomes quite necessary to understand better the underlying processes in DHFCs for the long term stability. Herein, we highlight recent studies of DHFCs in terms of a systematic approach for developing cost-effective and stable anode catalysts and electrode structures that incorporate mass transport characteristics of hydrazine, water and gas bubbles.
Keywords
Alkaline hydrazine fuel cells; Hydrazine hydrate; Electrode structure; Gas evolution reaction; Water management;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Antolini and E. R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources, 195, 3431-3450 (2010).   DOI
2 E. H. Yu, X. Wang, U. Krewer, L. Li, and K. Scott, Direct oxidation alkaline fuel cells: From materials to systems, Energy Environ. Sci., 5, 5668-5670 (2012).   DOI
3 S. Uhm, M. Seo, and J. Lee, Competitiveness of formic acid fuel cells: In comparison with methanol, Appl. Chem. Eng., 27, 123-127 (2016).   DOI
4 D. R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375, 158-169 (2018).   DOI
5 G. E. Evans and K. V. Kordesch, Hydrazine-air fuel cells. Hydrazine-air fuel cells emerge from the laboratory, Science, 158, 1148-1152 (1967).   DOI
6 K. Tamura and T. Kahara, Exhaust gas compositions and fuel efficiencies of hydrazine-air fuel cells, J. Electrochem. Soc., 123, 776-780 (1976).   DOI
7 A. Serov and C. Kwak, Direct hydrazine fuel cells: A review, Appl. Catal. B, 98, 1-9 (2010).   DOI
8 K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki, and T. Kobayashi, Investigation of PEM type direct hydrazine fuel cell, J. Power Sources, 115, 236-242 (2003).   DOI
9 K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, and T. Kobayashi, A platinum-free zero-carbon-emission easy fueling direct hydrazine fuel cell for vehicles, Angew. Chem. Int. Ed., 46, 8024-8027 (2007).   DOI
10 K. Asazawa, T. Sakamoto, S. Yamaguchi, K. Yamada, H. Fujikawa, H. Tanaka, and K. Oguro, Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells, J. Electrochem. Soc., 156, B509-B512 (2009).   DOI
11 T. Sakamoto, T. Masud, K. Yoshimoto, H. Kishi, S. Yamaguchi, D. Matsumura, K. Tamura, A. Hori, Y. Horiuchi, A. Serov, K. Artyushkova, P. Atanassov, and H. Tanaka, $NiO/Nb_2O_5/C$ hydrazine electrooxidation catalysts for anion exchange membrane fuel cells, J. Electrochem. Soc., 164, F22-F234 (2017).   DOI
12 A. Serov, M. Padilla, A. J. Roy, P. Atanassov, T. Sakamoto, K. Asazawa, and H. Tanaka, Anode catalysts for direct hydrazine fuel cells: From laboratory test to an electric vehicle, Angew. Chem. Int. Ed., 53, 10336-10339 (2014).   DOI
13 J. Sanabria-Chinchilla, K. Asazawa, T. Sakamoto, K. Yamada, H. Tanaka, and P. Strasser, Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways, J. Am. Chem. Soc., 133, 5425-5431 (2011).   DOI
14 T. Sakamoto, D. Matsumura, K. Asazawa, U. Martinez, A. Serov, K. Artyushkova, P. Atanassov, K. Tamura, Y. Nishihata, and H. Tanaka, Operando XAFS study of carbon supported Ni, NiZn, and Co catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells, Electrochim. Acta, 163, 116-122 (2015).   DOI
15 F. Yang, K. Cheng, G. Wang, and D. Cao, Flower-like Co nano-particles deposited on Ni foam substrate as efficient noble metal-free catalyst for hydrazine oxidation, J. Electroanal. Chem., 756, 186-192 (2015).   DOI
16 T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, H. Tanaka, and P. Atanassov, Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell, Electrochim. Acta, 215, 420-426 (2016).   DOI
17 J. Jeong, M. Choun, and J. Lee, Tree-bark-shaped N-doped porous carbon anode for hydrazine fuel cells, Angew. Chem., 129, 13698-13701 (2017).   DOI
18 W. X. Yin, Z. P. Li, J. K. Zhu, and H. Y. Qin, Effects of NaOH addition on performance of the direct hydrazine fuel cell, J. Power Sources, 182, 520-523 (2008).   DOI
19 Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun, and L. Jiang, Superaerophobic electrodes for direct hydrazine fuel cells, Adv. Mater., 27, 2361-2366 (2015).   DOI
20 K. Akbar, J. H. Kim, Z. Lee, M. Kim, Y. Yi, and S.-H. Chun, Superaerophobic graphene nano-hills for direct hydrazine fuel cells, NPG Asia Mater., 9, e378 (2017).   DOI
21 Y. Meng, X. Zou, X. Huang, A. Goswami, Z. Liu, and T. Asefa, Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation, Adv. Mater., 26, 6510-6516 (2014).   DOI
22 S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun, E. Kang, J. Hwang, Y.-H. Lee, C.-H. Shin, S.-H. Moon, S.-K. Kim, E. Lee, and J. Lee, Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: Effects of pore size and doping-site position, Angew. Chem. Int. Ed., 54, 9230-9234 (2015).   DOI
23 T. Sakamoto, A. Serov, T. Masuda, M. Kamakura, K. Yoshimoto, T. Omata, H. Kishi, S. Yamaguchi, A. Hori, Y. Horiuchi, T. Terada, K. Artyushkova, P. Atanassov, and H. Tanaka, Highly durable direct hydrazine hydrate anion exchange membrane fuel cell, J. Power Sources, 375, 291-299 (2018).   DOI
24 Z. Lu, Y. Li, X. Lei, J. Liu, and X. Sun, Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes, Mater. Horiz., 2, 294-298 (2015).   DOI
25 P. Argyropoulos, K. Scott, and W. M. Taama, Carbon dioxide evolution patterns in direct methanol fuel cells, Electrochim. Acta, 44, 3575-3584 (1999).   DOI
26 H. Yang, T. S. Zhao, and Q. Ye, In situ visualization study of $CO_2$ gas bubble behavior in DMFC anode flow fields, J. Power Sources, 139, 79-90 (2005).   DOI
27 E. H. Yu, U. Krewer, and K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells, Energies, 3, 1499-1528 (2010).   DOI
28 J. Wang, Q. Yang, M. Wang, C. Wang, and L. Jiang, Rose petals with a novel and steady air bubble pinning effect in aqueous media, Soft Matter., 8, 2261-2266 (2012).   DOI
29 K. Scott, P. Argyropoulos, P. Yiannopoulos, and W. M. Taama, Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds, J. Appl. Electrochem., 31, 823-832 (2001).   DOI
30 X. Chen, Y. Wu, B. Su, J. Wang, Y. Song, and L. Jiang, Terminating marine methane bubbles by superhydrophobic sponges, Adv. Mater., 24, 5884-5889 (2012).   DOI
31 W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, and H. F. Bohn, The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater, 22, 2325-2328 (2010).   DOI
32 B. Jeong, J. D. Ocon, and J. Lee, Electrode architecture in galvanic and electrolytic energy cells, Angew. Chem. Int. Ed., 55, 4870-4880 (2016).   DOI
33 T. J. Omasta, L. Wang, X. Peng, C. A. Lewis, J. R. Varcoe, and W. E. Mustain, Importance of balancing membrane and electrode water in anion exchange membrane fuel cells, J. Power Sources, 375, 205-213 (2018).   DOI
34 S. Uhm, H. J. Lee, and J. Lee, Understanding underlying processes in formic acid fuel cells, Phys. Chem. Chem. Phys., 11, 9326-9336 (2009).   DOI