Browse > Article
http://dx.doi.org/10.14478/ace.2019.1057

Fabrication and Evaluation of Polyelectrolyte Complexes of Dextran Derivatives for Drug Coating of Coronary Stents  

Jang, Eun-Jae (Biopharmaceutical Research Center)
Lee, So-Youn (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare)
Bae, In-Ho (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare)
Park, Dae Sung (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare)
Jeong, Myung Ho (Department of Cardiology, Chonnam National University Hospital)
Park, Jun-Kyu (CGBio Co. Ltd)
Publication Information
Applied Chemistry for Engineering / v.30, no.5, 2019 , pp. 586-590 More about this Journal
Abstract
The aim of this study was to fabricate a dextran polyelectrolyte multi-layer on a bare metal stent (BMS) and to evaluate bio-physical properties of the layer. Diethylaminoethyl-dextran (DEAE-D) as a polycation and dextran sulfate (DS) as a polyanion were successively coated on the bare metal stent by a well-known layer-by-layer procedure. The morphology of the stent surface and its cell adhesion were studied after each coating step by scanning electron microscopy. The stent showed more blotched and slightly rougher morphology after dextran-DS coating. The contact angle of the DEAE-DS group ($39.5{\pm}0.15^{\circ}$) was significantly higher than that of the BMS group ($45.16{\pm}0.08^{\circ}$), indicating the improvement of hydrophilic. The SMC proliferation inhibition in the DEAE-DS-coated stent group ($20.9{\pm}0.04%$) was stronger than that in the control group ($21.7{\pm}0.10%$ in DS-coated group only). The DEAE-DS coating is desired for stent coating materials with biocompatibility and anti-restenosis effect.
Keywords
Dual drug-eluting stent; Electrolyte coating; Dextran; Nature polymer; Anti-restenosis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Tsimikas, Drug-eluting stents and late adverse clinical outcomes lessons learned, lessons awaited, J. Am. Coll. Cardiol., 47, 2112-2115 (2006).   DOI
2 G. W. Jeong, T. H. Kim, J. W. Nah, and J. K. Park, The developing trend in bioresorbable stent for trement of coronary artery disease, Appl. Chem. Eng., 29, 5, 497-502.   DOI
3 F. G. Welt and C. Rogers, Inflammation and restenosis in the stent era, Arterioscler. Thromb. Vasc. Biol., 22, 1769-1776 (2002).   DOI
4 C. Spaulding, J. Daemen, E. Boersma, D. E. Cutlip, and P. W. Serruys, A pooled analysis of data comparing sirolimus-eluting stents with bare-metal stents, N. Engl. J. Med., 356, 989-997 (2007).   DOI
5 S. Meng, Z. Liu, L. Shen, Z. Guo, L. L. Chou, and W. Zhong, The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system, Biomaterials, 30, 2276-2283 (2009).   DOI
6 E. P. McFadden, E. Stabile, E. Regar, E. Cheneau, A. T. Ong, and T. Kinnaird, Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy, Lancet, 364, 1519-1521 (2004).   DOI
7 A. Sethi, A. Bahekar, R. Bhuriya, A. Bajaj, P. P. Singh, R. Arora, and S. Khosla, Zotarolimus-eluting stent versus sirolimus-eluting and paclitaxel-eluting stents for percutaneous coronary intervention: A meta-analysis of randomized trials, Arch. Cardiovasc. Dis., 105, 544-556 (2012).   DOI
8 C. Guan, B. Xu, S. Qiao, L. Qin, Y. Li, Z. Li, Y. Guo, Z. Sun, L. Song, and R. Gao, Comparison of two biodegradable-polymer-based sirolimus-eluting stents with varying elution and absorption kinetics in patients with acute myocardial infarction: A subgroup analysis of the PANDA III trial, Catheter. Cardiovasc. Interv., 89, 520-527 (2017).   DOI
9 Y. Han, B. Xu, K. Xu, C. Guan, Q. Jing, Q. Zheng, X. Li, X. Zhao, H. Wang, X. Zhao, X. Li, P. Yu, H. Zang, Z. Wang, X. Cao, J. Zhang, W. Pang, J. Li, Y. Yang, and G. D. Dangas, Six versus 12 months of dual antiplatelet therapy after implantation of biodegradable polymer sirolimus-eluting stent: Randomized substudy of the I-LOVE-IT 2 trial, Circ. Cardiovasc. Interv., 9, e003145 (2016).
10 I. H. Bae, M. H. Jeong, J. H. Kim, Y. H. Park, K. S. Lim, D. S. Park, J. W. Shim, Y. Ahn, Y. J. Hong, and D. S. Sim, The control of drug release and vascular endothelialization after hyaluronic acid-coated paclitaxel multi-layer coating stent implantation in porcine coronary restenosis model, Korean Circ J., 47, 123-131 (2017).   DOI
11 J. Aoki, Complications of polymers on drug-eluting stents: Looking toward polymer-free drug-eluting stents, Intern. Med., 54, 549-550 (2015).   DOI
12 S. K. Yazdani, M. Vorpahl, M. Nakano, S. H. Su, F. D. Kolodgie, and R. Virmani, In vitro and in vivo characterisation of biodegradable polymer-based drug-eluting stent, EuroIntervention, 7, 835-843 (2011).   DOI
13 B. Thierry, F. M. Winnik, Y. Merhi, J. Silver, and M. Tabrizian, Bioactive coatings of endovascular stents based on polyelectrolyte multilayers, Biomacromolecules, 4, 1564-1571 (2003).   DOI
14 J. Zhang, B. Senger, D. Vautier, C. Picart, P. Schaaf, J. C. Voegel, and P. Lavalle, Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid, Biomaterials, 26, 3353-3361 (2005).   DOI
15 G. Sun, Y. I. Shen, S. Kusuma, K. Fox-Talbot, C. J. Steenbergen, and S. Gerecht, Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors, Biomaterials, 32, 95-106 (2011).   DOI
16 S. R. Van Tomme and W. E. Hennink, Biodegradable dextran hydrogels for protein delivery applications, Expert Rev. Med. Devices, 4, 147-164 (2007).   DOI
17 W. C. Lin, D. G. Yu, and M. C. Yang, Blood compatibility of thermoplastic polyurethane membrane immobilized withwater-soluble chitosan/dextran sulfate, Colloids Surf. B, 44, 82-92 (2005).   DOI
18 A. J. Chung and M. F. Rubner, Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films, Langmuir, 18, 1176-1183 (2005).   DOI
19 T. Groth and A. Lendlein, Layer-by-layer deposition of polyelectrolytes: A versatile tool for the in vivo repair of blood vessels, Angew. Chem., 43, 926-928 (2004).   DOI
20 I. H. Bae, K. S. Lim, J. K. Park, D. S. Park, S. Y. Lee, and E. J. Jang, Mechanical behavior and in vivo properties of newly designed bare metal stent for enhanced flexibility, J. Ind. Eng. Chem., 21, 1295-1300 (2015).   DOI
21 K. S. Lim, I. H. Bae, J. H. Kim, D. S. Park, J. M. Kim, and J. H. Kim, Mechanical and histopathological comparison between commercialized and newly designed coronary bare metal stents in a porcine coronary restenosis model, Chonnam Med. J., 49, 7-13 (2013).   DOI
22 F. Unger, U. Westedt, P. Hanefeld, R. Wombacher, S. Zimmermann, A. Greiner, M. Ausborn, and T. Kissel, Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings?, J. Control. Release, 117, 312-321 (2007).   DOI
23 P. Buszman, S. Trznadel, A. Zurakowski, K. Milewski, L. Kinasz, and M. Krol, Prospective registry evaluating safety and efficacy of cobalt-chromium stent implantation in patients with de novo coronary lesions, Kardiologia Polska, 65, 1041-1046 (2007).
24 S. Benni, T. Avramoglou, H. Hlawaty, and Y. Mora1, Dynamic contact angle analysis of protein adsorption on polysaccharide multilayer's films for biomaterial reendothelialization, Biomed Res. Int., 10, 679031 (2014).
25 F. Ganji and E. Vasheghani-Farahani, Hydrogels in controlled drug delivery systems, Iran. Polym. J., 18, 63-88 (2009).
26 G. Costamagna, M. Mutignani, G. Rotondano, L. Cipolletta, L. Ghezzo, A. Foco, and A. Zambelli, Hydrophilic hydromer-coated polyurethane stents versus uncoated stents in malignant biliary obstruction: A randomized trial, Gastroint. Endosc., 51, 8-11 (2000).   DOI
27 J. W. Leung, Y. Liu, S. Cheung, R. C. Chan, J. F. Inciardi, and A. F. Cheng, Effect of antibiotic-loaded hydrophilic stent in the prevention of bacterial adherence: A study of the charge, discharge, and recharge concept using ciprofloxacin, Gastrointest Endosc., 53, 431-437 (2001).   DOI
28 S. Y. Lee, I. H. Bae, D. S. Park, E. J. Jang, J. W. Shim, K. S. Lim, J. K. Park, D. S. Sim, and M. H. Jeong, Comparison of dextran-based sirolimus-eluting stents and PLA-based sirolimus-eluting stents in vitro and in vivo, J. Biomed. Mater. Res. A, 105(1), 1002 (2017).   DOI