Browse > Article
http://dx.doi.org/10.14478/ace.2019.1069

Recent Trend in Catalysis for Degradation of Toxic Organophosphorus Compounds  

Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy)
Jeong, Keunhong (Department of Physics and Chemistry, Korea Military Academy)
Kim, Dongwook (Department of Physics and Chemistry, Korea Military Academy)
Publication Information
Applied Chemistry for Engineering / v.30, no.5, 2019 , pp. 513-522 More about this Journal
Abstract
Catalysts based on organic compounds, transition metal and metal-organic frameworks (MOFs) have been applied to degrade or remove organophosphorus toxic compounds (OPs). During the last 20 years, various MOFs were designed and synthesized to suit application purposes. MOFs with $Zr_6$ based metal node and organic linker were widely used as catalysts due to their tunability for the pore size, porosity, surface area, Lewis acidic sites, and thermal stability. In this review, effect on catalytic efficiency between MOFs properties according to the structure, stability, particle size, number of connected-ligand, organic functional group, and so on will be discussed.
Keywords
Organophosphorus compounds (OPs); Metal organic frameworks (MOFs); Chemical warfare agent (CWA);
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. K. Totten, Y. S. Kim, M. H. Weston, O. K. Farha, J. T. Hupp, and S. T. Nguyen, Enhanced catalytic activity through the tuning of micropore environment and supercritical $CO_2$ processing: Al(porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant, J. Am, Chem. Soc., 135, 11720-11723 (2013).   DOI
2 A. Pankajakshan, M. Sinha, A. A. Ohja, and S. Mandal, Water-stable nanoscale zirconium-based metal-organic frameworks for the effective removal of glyphosate from aqueous media, ACS Omega, 3, 7832-7839 (2018).   DOI
3 Q. Yang, J. Wang, X. Chen, W. Yang, H. Pei, N. Hu, Z. Li, Y. Suo, T. Li, and J. Wang, The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent, J. Mater. Chem. A, 6, 2184-2192 (2018).   DOI
4 S. Y. Moon, E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha, Detoxification of chemical warfare agents using a Zr6-based metal-organic framework/polymer mixture, Chem. Eur. J., 22, 14864-14868 (2016).   DOI
5 M. K. Kim, S. H. Kim, M. G. Park, S. G. Ryu, and H. S. Jung, Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-$NH_2$, RSC Adv., 8, 41633-41638 (2018).   DOI
6 E. Lopez-Maya, C. Montoro, L. M. Rodriguez-Albelo, S. D. A. Cervantes, A. A. Lozano-Perez, J. L. Cenis, E. Barea, and J. A. R. Navarro, Textile metal-organic framework composites as self-detoxifying filters for chemical warfare agents, Angew. Chem. Int. Ed., 54, 6790-6794 (2015).   DOI
7 R. Gil-San-Millan, E. Lopez-Maya, M. Hall, N. M. Padial, G. W. Peterson, J. B. DeCoste, L. M. Rodriguez-Albelo, J. E. Oltra, E. Barea, and J A. R. Navarro, Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites, ACS Appl. Mater. Interfaces, 9, 23967-23973 (2017).   DOI
8 T. Islamoglu, A. Atilgan, S. Y. Moon, G. W. Peterson, J. B. DeCoste, M. Hall, J. T. Hupp, and O. K. Farha, Cerium(IV) vs zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent, Chem. Mater., 29, 2672-2675 (2017).   DOI
9 S. Y. Moon, G. W. Wagner, J. E. Mondloch, G. W. Peterson, G. J. B. DeCoste, J. T. Hupp, and O. K. Farha, Effective, facile, and selective hydrolysis of the chemical warfare agent VX using $Zr_6$-based metal-organic frameworks, Inorg. Chem., 54, 10829-10833 (2015).   DOI
10 M. C. de Koning, M. van Grol, and T. Breijaert, Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks UiO-66-$NH_2$, MOF-808, NU-1000, and PCN-777, Inorg. Chem., 56, 11804-11809 (2017).   DOI
11 S. Wang, L. Bromberg, H. Schreuder-Gibson, and T. A. Hatton, Organophophorous ester degradation by chromium(III) terephthalate metal-organic framework (MIL-101) chelated to N,N-dimethylaminopyridine and related aminopyridines, ACS Appl. Mater. Interfaces, 5, 1269-1278 (2013).   DOI
12 Y. Liu. S. Y. Moon, J. T. Hupp, and O. K. Farha, Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants, ACS. Nano, 9, 12358-12364 (2015).   DOI
13 T. Wagner-Jauregg, B. E. Hackley Jr., T. A. Lies, O. O. Owens, and R. Proper, Model reactions of phosphorus-containing enzyme inactivators. IV. The catalytic activity of certain metal salts and chelates in the hydrolysis of diisopropyl fluorophosphate, J. Am. Chem. Soc., 77, 922-929 (1955).   DOI
14 N. M. Padial, E. Q. Procopio, C. Montoro, E. Lopez, J. E. Oltra, V. Colombo, A. Maspero, N. Masciocchi, S. Galli, I. Senkovska, S. Kaskel, E. Barea, and J. A. Navarro, Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds, Angew. Chem. Int. Ed., 52, 8290-8294 (2013).   DOI
15 Y. Z. Chen, R. Zhang, L. Jiao, and H. L. Jiang, Metal-organic framework-derived porous materials for catalysis, Coord. Chem. Rev., 362, 1-23 (2018).   DOI
16 J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450-1459 (2009).   DOI
17 R. K. Kalakuntla, T. Wille, R. Le Provost, S. Letort, G. Reiter, S. Muller, H. Thiermann, F. Worek, G. Gouhier, O. Lafont, and F. Estour, New modified-cyclodextrin derivatives as detoxifying agents of chemical warfare agents(I). Synthesis and preliminary screening: Evaluation of the detoxification using a half-quantitative enzymatic assay, Toxicol. Lett., 216, 200-205 (2013).   DOI
18 A. Saxena, A. Sharma, B. Singh, M. V. S. Suryanarayana, T. H. Mahato, M. Sharma, R. P. Semwal, A. K. Gupta and K. Sekhar, Kinetics of in-situ degradation of nerve agent simulants and sarin on carbon with and without impregnants, Carbon Sci., 6, 158-165 (2005).
19 R. L. Gustafson, S. Chaberek Jr., and A. E. Martell, A kinetic study of the copper(II) chelate catalyzed hydrolysis of diisopropyl phosphorofluoridate, J. Am. Chem. Soc., 85, 598-601 (1963).   DOI
20 R. L. Gustafson and A. E. Martell, A kinetic study of the copper(II) chelate-catalyzed hydrolysis of isopropyl methylphosphonofluoridate (sarin), J. Am. Chem. Soc., 84, 2309-2316 (1962).   DOI
21 G. W. Wagner, P. W. Bartram, O. Koper, and K. J. Klabunde, Reactions of VX, GD, and HD with nanosize MgO, J. Phys. Chem. B, 103, 3225-3228 (1999).   DOI
22 Y. S. Kye, K. H. Jeong, and W. Y. Chung, Decomposition studies of DFP using transition metal catalysts, Appl. Chem. Eng., 21, 1-5 (2010).
23 Y. S. Kye, W. Y. Chung, D. W. Kim, Y. K. Park, S. U. Song, and K. H. Jeong, A study on the decomposition of DFP using Cu(II)-chitosan complex, J. Korean Inst. Mil. Sci. Technol., 15, 699-704 (2012).   DOI
24 G. W. Wagner and P. W. Bartram, Reactions of VX, HD, and their simulants with NaY and AgY zeolites. Desulfurization of VX on AgY, Langmuir, 15, 8113-8118 (1999).   DOI
25 S. Chauhan, S. Chauhan, R. D'Cruz, S. Faruqi, K. K. Singh, S. Varma, M. Singh, and V. Karthik, Chemical warfare agents, Environ. Toxicol. Pharmacol., 26, 113-122 (2008).   DOI
26 J. Lavoie, S. Srinivasan, and R. Nagarajan, Using cheminformatics to find simulants for chemical warfare agents, J. Hazard. Mater., 194, 85-91 (2011).   DOI
27 M. Enserink, U. N. taps special labs to investigate Syrian attack, Science, 341, 1050-1051 (2013).   DOI
28 A. M. Howitt and R. L. Pangi, Countering Terrorism: Dimension of Preparedness, 356-357, The MIT Press, Cambridge, Massachusetts, USA (2003).
29 T. Nakagawa and A. T. Tu, Murders with VX: Aum Shinrikyo in Japan and the assassination of Kim Jong-Nam in Malaysia, Forensic Toxicol., 36, 542-544 (2018).   DOI
30 L. Szinicz, History of chemical and biological warfare agents, Toxicology, 214, 167-181 (2005).   DOI
31 F. M, Raushel, Catalytic detoxification, Nature, 469, 310-311 (2011).   DOI
32 M. Bennett, TICs, TIMs, and terrorists commodity chemicals take on a sinister role as potential terrorist tools, Todays Chemist at Work, 12, 21-26 (2003).
33 A. W. Khan, S. Kotta, S. H. Ansari, J. Ali, and R. K. Sharma, Recent advances in decontamination of chemical warfare agents, Def. Sci. J., 63, 487-496 (2013).   DOI
34 K. B. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and detection of chemical warfare agents, Chem. Rev., 111, 5345-5403 (2011).   DOI
35 B. M. Smith, Catalytic methods for the destruction of chemical warfare agents under ambient conditions, Chem. Soc. Rev., 37, 470-478 (2008).   DOI
36 M. S. Lee, S. J. Garibay, A. M. Ploskonka, and J. B. DeCoste, Bioderived protoporphyrin IX incorporation into a metal-organic framework for enhanced photocatalytic degradation of chemical warfare agents, MRS Commun., 9, 464-473 (2019).   DOI
37 Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Y. Moon, J. T. Hupp, and O. K. Farha, Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coord. Chem. Rev., 346, 101-111 (2017).   DOI
38 P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey, Metal-organic frameworks as efficient materials for drug delivery, Angew. Chem. Int. Ed., 45, 5974-5978 (2006).   DOI
39 N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, and R. Q. Snurr, Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents, Chem. Soc. Rev., 46, 3357-3385 (2017).   DOI
40 R. A. Moss, D. Bolikal, H. D. Durst, and J. W. Hovanec, Polymer-bound iodosobenzoate reagents for the cleavage of reactive phosphates, Tetrahedron Lett., 29, 2433-2436 (1988).   DOI
41 R. A. Moss and Y. C. Chung, Immobilized iodosobenzoate catalysts for the cleavage of reactive phosphates, J. Org. Chem., 55, 2064-2069 (1990).   DOI
42 I. W. Yang, J. S. Kim and Y. J. Chung, Catalytic hydrolysis reactions of alkylammonium IBA, J. Korean. Ind. Eng. Chem., 13, 407-410 (2002).
43 I. W. Yang and D. G. Kang, A study on the synthesis of bis-IBA derivatives and their catalytic effects on the hydrolysis reaction of nerve agents, J. Korean Inst. Mil. Sci. Technol., 2, 73-81 (1999).
44 K. K. Ghosh, D. S Sinha, M. L. Satnami, A. K. Shrivastave, D. K. Dubey, and G. L. Mundhara, Kinetic study of hydrolytic decomposition of organophosphates and thiophosphate by N-hydroxyamides in cationic micellar media, Indian J. Chem., 45, 726-730 (2006).
45 Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, and T. Yildirim, Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges, J. Am. Chem. Soc., 135, 11887-11894 (2013).   DOI
46 M. Eddaoudi, J. H. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469-472 (2002).   DOI
47 M. P. Suh, H. J. Park, T. K. Prasad, and D. W. Lim, Hydrogen storage in metal-organic frameworks, Chem. Rev., 112, 782-835 (2012).   DOI
48 H. W. Langmi, J. Ren, B. North, M. Mathe, and D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review, Electrochim. Acta, 128, 368-392 (2014).   DOI
49 Y. Cui, B. Li, H. He, W. Zhou, B. Chen, and G. Qian, Metal-organic frameworks as platforms for functional materials, Acc. Chem. Res., 49, 483-493 (2016).   DOI
50 H. Furukawa, K. E. Cordova, M. O'Keee, and O. M. Yaghi, The chemistry and applications of metalorganic frameworks, Science, 341, 974-990 (2013).
51 I. Matito-Martos, P. Z. Moghadam, A. Li, V. Colombo, J. A. R. Navarro, S. Calero, and D. Fairen-Jimenez, Discovery of an optimal porous crystalline material for the capture of chemical warfare agents, Chem. Mater., 30, 4571-4579 (2018).   DOI
52 J. B. Decoste and G. W. Peterson, Metal organic frameworks for air purification of toxic chemicals, Chem. Rev., 114, 5695-5727 (2014).   DOI
53 R. S. Vemuri, P. D. Armatis, J. R. Bontha, B. P. McGrail, and R. K. Motkuri, An overview of detection and neutralization of chemical warfare agents using metal organic frameworks, J. Bioterror. Biodef., 6: 137 (2015)
54 A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater., 1, 15018-15032 (2016).   DOI
55 H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999).   DOI
56 Y. C. Yang, J. A. Baker, and J. R. Ward, Decontamination of chemical warfare agents, Chem. Rev., 92, 1729-1743 (1992).   DOI
57 N. J. Rabkin, United States General Accounting Office Reports: DOD should Eliminate DS2 from Its Inventory of Decontaminants, GAO, Gaithersburg, Maryland, USA (1990).
58 M. Rani and U. Shanker, Degradation of traditional and new emerging pesticides in water by nanomaterials: Recent trends and future recommendations, Int. J. Environ. Sci. Technol., 15, 1347-1380 (2018).   DOI
59 D. B. Kim, B. Gweon, S. Y. Moon, and W. Choe, Decontamination of the chemical warfare agent simulant dimethylmethylphosphonate by means of large-area low-temperature atmospheric pressure plasma, Curr. Appl. Phys., 9, 1093-1096 (2009).   DOI
60 R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, o-Iodosobenzoate: Catalyst for the micellar cleavage of activated esters and phosphates, J. Am. Chem. Soc., 105, 681-682 (1983).   DOI
61 M. J. Katz, J. E. Mondloch, R. K. Totten, J. K. Park, S. T. Nguyen, O. K. Farha, and J. T. Hupp, Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants, Angew. Chem. Int. Ed., 53, 497-501 (2013); Angew. Chem., 126, 507-511 (2014).   DOI
62 C. Montoro, F. Linares, E. Q. Procopio, I. Senkovska, S. Kaskel, S. Galli, N. Masciocchi, E. Barea, and J. A. Navarro, Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal-organic frameworks, J. Am. Chem. Soc., 133, 11888-11891 (2011).   DOI
63 G. W. Wagner, O. B. Koper, E. Lucas, S. Decker, and K. J. Klabunde, Reactions of VX, GD, and HD with nanosize CaO: Autocatalytic dehydrohalogenation of HD, J. Phys. Chem. B, 104, 5118-5123 (2000).   DOI
64 H. Morales-Rojas and R. A. Moss, Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles, Chem. Rev., 102, 2497-2521 (2002).   DOI
65 R. A. Moss, K. W. Alwis, and J. S. Shin, Catalytic cleavage of active phosphate and ester substrates by iodoso- and iodoxybenzoates, J. Am. Chem. Soc., 106, 2651-2655 (1984).   DOI
66 H. Shigekawa, M. Ishida, K. Miyake, R. Shioda, Y. Iijima, T. Imai, H. Takahashi, J. Sumaoka, and M. Komiyama, Extended X-ray absorption fine structure study on the cerium(IV)-induced DNA hydrolysis: Implication to the roles of 4f orbitals in the catalysis, Appl. Phys. Lett., 74, 460-462 (1999).   DOI
67 Y. Liu, A. J. Howarth, J. T. Hupp, and O. K. Farha, Selective photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework, Angew. Chem. Int. Ed., 54, 9001-9005 (2015).   DOI
68 P. Li, R. C. Klet, S. Y. Moon, T. C. Wang, P. Deria, A. W. Peters, B. M. Klahr, H. J. Park, S. S. Al-Juaid, J. T. Hupp, and O. K. Farha, Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: Significant enhancement in the degradation of a nerve agent simulants, Chem. Commun., 51, 10925-10928 (2015).   DOI
69 J. E. Mondloch, M. J. Katz, W. C. Isley III, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, and O. K. Farha, Destruction of chemical warfare agents using metal-organic frameworks, Nat. Mater., 14, 512-516 (2015).   DOI
70 G. W. Wagner, L. R. Procell, R. J. O'Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, Reactions of VX, GB, GD, and HD with nanosize $Al_2O_3$. formation of aluminophosphonates, J. Am. Chem. Soc., 123, 1636-1644 (2001).   DOI
71 G. W. Wagner, L. R. Procell, and S. Munavalli, $^{27}Al$, $^{47,49}Ti$, $^{31}P$, and $^{13}C$ MAS NMR study of VX, GD, and HD reactions with nanosize $Al_2O_3$, conventional $Al_2O_3$ and $TiO_2$, and aluminum and titanium metal, J. Phys. Chem. C., 111, 17564-17569 (2007).   DOI
72 G. W. Wagner, Q. Che and Y. Wu, Reactions of VX, GD, and HD with nanotubular titania, J. Phys. Chem. C., 112, 11901-11906 (2008).   DOI
73 T. J. Bandosz, M. Laskoski, J. Mahle, G. Mogilevsky, G. W. Peterson, J. A. Rossin, and G. W. Wagner, Reactions of VX, GD, and HD with $Zr(OH)_4$: Near instantaneous decontamination of VX, J. Phys. Chem. C., 116, 11606-11614 (2012).   DOI
74 K. H. Jeong, J. M. Shim, W. Y. Chung, Y. S. Kye, and D. W. Kim, Diisopropyl fluorophosphate (DFP) degradation activity using transition metal-dipicolylamine complexes, Appl. Organomet. Chem., 32, e4383-4387 (2018).   DOI
75 J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, C. J. Oldham, H. J. Walls, G. W. Peterson, and G. N. Parsons, Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs, Angew. Chem. Int. Ed., 55, 13224-13228 (2016).   DOI
76 R. J. Drout, L. Robison, Z. Chen, T. Islamoglu, and O. K. Farha, Zirconium metal-organic frameworks for organic pollutant adsorption, Trends Chem., 1, 304-317 (2019).   DOI
77 S. Y. Moon, Y. Liu, T. T. Hupp, and O. K. Farha, Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework, Angew. Chem., Int. Ed., 54, 6795-6799 (2015).   DOI
78 M. J. Katz, S. Y. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp, and O. K. Farha, Exploiting parameter space in MOFs: A 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-$NH_2$, Chem. Sci., 6, 2286-2291 (2015).   DOI
79 S. J. Oh, C. W. Yoon, and J. W. Park, Catalytic hydrolysis of phosphate triesters by lanthanide(III) cryptate (2.2.1) complexes, J. Chem. Soc. Perkin Trans. 2, 3, 329-331 (1996).
80 J. K. Yang, S. I. Chang, S. G. Ryu, and Y. S. Yang, Catalytic effects of Cu(II)-TMED and Cu(II)-BIPY on the hydrolysis of p-nitrophenol diphenyl phosphate, Bull. Korean Chem. Soc., 15, 261-263 (1994).
81 W. Y. Chung and Y. S. Kye, A study on the hydrolysis of sarin and soman by merrifield-type diaminatedpolystyrene-Cu(II) heterogeneous polymers, J. Korean Inst. Mil. Sci. Technol., 3, 164-175 (2000).
82 J. Ye, L. Gagliardi, C. J. Cramer, and D. G. Truhlar, Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization, J. Catal., 360, 160-167 (2018).   DOI
83 R. Zou, R. Zhong, S. Han, H. Xu, A. K. Burrell, N. Henson, J. L. Cape, D. D. Hickmott, T. V. Timofeeva, T. E. Larson, and Y. Zhao, A porous metal-organic replica of ${\alpha}-PbO_2$ for capture of nerve agent surrogate, J. Am. Chem. Soc., 132, 17996-17999 (2010).   DOI
84 S. Sabale, J. Zheng, R. S. Vemuri, X. Y. Yu, B. P. McGrail, and R. K. Motkuri, Recent advances in metal-organic frameworks for heterogeneous catalyzed organic transformations, Synth. Catal., 1, 1-8 (2016).
85 G. W. Peterson and G. W. Wagner, Detoxification of chemical warfare agents by CuBTC, J. Porous Mater., 21, 121-126 (2014).   DOI
86 I. Suzuki, S. Oki, and S. Namba, Determination of external surface areas of zeolites, J. Catal., 100, 219-227 (1986).   DOI
87 O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin, and J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?, J. Am. Chem. Soc., 134, 15016-15021 (2012).   DOI
88 H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo, J. H. Kim, M. O'Keeffe, and O. M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals, Inorg. Chem., 50, 9147-9152 (2011).   DOI
89 H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart, and O. M. Yaghi, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018-1023 (2012).   DOI
90 G. W. Wagner, G. W. Peterson, and J. J. Mahle, Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: The development of self-decontaminating paints, Ind. Eng. Chem. Res., 51, 3598-3603 (2012).   DOI
91 O. M .Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706 (1995).   DOI
92 N. L. Rosi, M. Eddaoudi, J. H. Kim, M. O'Keeffe, and O. M. Yaghi, Advances in the chemistry of metal-organic frameworks, Cryst. Eng. Comm., 4, 401-404 (2002).   DOI
93 M. H. Yap, K. L. Fow, and G. Z. Chen, Synthesis and applications of MOF-derived porous nanostructures, Green Energy Environ., 2, 218-245 (2017).   DOI
94 C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, 6th ed., 140-141, 194-195, Elsevier, Netherlands (2007).