Browse > Article
http://dx.doi.org/10.14478/ace.2019.1052

Research and Development Trend of Electrolyte Membrane Applicable to Water Electrolysis System  

Im, Kwang Seop (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Son, Tae Yang (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Kim, Kihyun (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Kim, Jeong F. (Department of Energy and Chemical Engineering, Incheon University)
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.4, 2019 , pp. 389-398 More about this Journal
Abstract
Hydrogen energy is not only a solution to climate change problems caused by the use of fossil fuels, but also as an alternative source for the industrial power generation and automotive fuel. Among hydrogen production methods, electrolysis of water is considered to be one of the most efficient and practical methods. Compared to that of the fossil fuel production method, the method of producing hydrogen directly from water has no emission of methane and carbon dioxide, which are regarded as global environmental pollutants. In this paper, the alkaline water electrolysis (AWE) and polymer electrolyte membrane water electrolysis (PEMWE), which are one of the hydrogen production methods, were discussed. Recent research trends of hydrocarbon electrolyte membranes and the crossover phenomenon of electrolyte membranes were also described.
Keywords
Hydrogen; Water electrolysis; Alkaline water electrolysis; Polymer electrolyte membrane water electrolysis; Crossover;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 K. E. Ayers, E. B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki, Research advances towards low cost, high efficiency PEM electrolysis, ECS Transactions, 33, 3-15 (2010).
2 M. M. Rashid, M. K. Mesfer, H. Naseem, and M. Danish, Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis, International Journal of Engineering and Advanced Technology, 4, 80-93 (2015).
3 M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, International Journal of Hydrogen Energy, 38, 4901-4934 (2013).   DOI
4 M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs), Chemical Reviews, 104, 4587-4612 (2004).   DOI
5 B. C. Bae, Special issue: Development trend of polymer electrolyte membrane for suspension, Trends in Metals & Materials Engineering (The Korean Institute of Metals & Materials), 28(4), 13-22 (2015).
6 M. Du, L. Yang, X. Luo, K. Wang, and G. Chang, Novel phosphoric acid (PA)-poly (ether ketone sulfone) with flexible benzotriazole side chains for high-temperature proton exchange membranes, Polymer Journal, 51, 69-75 (2019).   DOI
7 J. Miyake, R. Taki, T. Mochizuki, R. Shimizu, R. Akiyama, M. Uchida, and K. Miyatake, Design of flexible polyphenylene proton- conducting membrane for next-generation fuel cells, Science Advances, 3, eaao0476 (2017).   DOI
8 K. Kim, P. Heo, J. Han, J. Kim, and J. C. Lee, End-group cross-linked sulfonated poly (arylene ether sulfone) via thiol-ene click reaction for high-performance proton exchange membrane, Journal of Power Sources, 401, 20-28 (2018).   DOI
9 P. Trinke, P. Haug, J. Brauns, B. Bensmann, R. Hanke-Rauschenbach, and T. Turek, Hydrogen crossover in PEM and alkaline water electrolysis: Mechanisms, direct comparison and mitigation strategies, Journal of The Electrochemical Society, 165, F502-F513 (2018).   DOI
10 W. Hu, X. Cao, F. Wang, and Y. Zhang, A novel cathode for alkaline water electrolysis, International Journal of Hydrogen Energy, 22, 441-443 (1997).   DOI
11 G. Merle, M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, Journal of Membrane Science, 377, 1-35 (2011).   DOI
12 G. J. Hwang and H. S. Choi, Hydrogen production systems through water electrolysis, Membrane Journal, 27, 477-486 (2017).   DOI
13 L. A. Diaz, R. E. Coppola, G. C. Abuin, R. Escudero-Cid, D. Herranz, and P. Ocon, Alkali-doped polyvinyl alcohol-polybenzimidazole membranes for alkaline water electrolysis, Journal of Membrane Science, 535, 45-55 (2017).   DOI
14 I. Y. Jang, O. H. Kweon, K. E. Kim, G. J. Hwang, S. B. Moon, and A. S. Kang, Application of polysulfone (Psf)-and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis, Journal of Membrane Science, 322, 154-161 (2008).   DOI
15 E. J. Park, C. B. Capuano, K. E. Ayers, and C. Bae, Chemically durable polymer electrolytes for solid-state alkaline water electrolysis, Journal of Power Sources, 375, 367-372 (2018).   DOI
16 J. N. Park, Status of hydrogen station technology and policy, Korean Journal of Chemical Engineering, 21, 10-19 (2018).
17 K. Kim, S. K. Kim, J. O. Park, S. W. Choi, K. H. Kim, T. Ko, C. Pak, and J. C. Lee, Highly reinforced pore-filling membranes based on sulfonated poly (arylene ether sulfone) s for high-temperature/ low-humidity polymer electrolyte membrane fuel cells, Journal of Membrane Science, 537, 11-21 (2017).   DOI
18 M. Y. Lim and K. Kim, Sulfonated poly (arylene ether sulfone) and perfluorosulfonic acid composite membranes containing perfluoropolyether grafted graphene oxide for polymer electrolyte membrane fuel cell applications, Polymers, 10, 569-582 (2018).   DOI
19 K. A. Lewinski, D. F. Van der Vliet, and S. M. Muopa, NSTF advances for PEM electrolysis-The effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers, ECS Transactions, 69, 893-917 (2015).   DOI
20 K. E. Ayers, C. Capuano, and E. B. Anderson, Recent advances in cell cost and efficiency for PEM-based water electrolysis, ECS Transactions, 41, 15-22 (2012).
21 S. Siracusano, V. Baglio, A. Stassi, L. Merlo, E. Moukheiber, and A. S. Arico, Performance analysis of short-side-chain $Aquivion^{(R)}$ perfluorosulfonic acid polymer for proton exchange membrane water electrolysis, Journal of Membrane Science, 466, 1-7 (2014).   DOI
22 B. H. Jeong, N. O. Kim, and K. Y. Lee, A study on the performance analysis for the CPV module applying sphericalness lens, The Transactions of the Korean Institute of Electrical Engineers P, 59, 293-297 (2010)   DOI
23 S. B. Han, The trend of polymer electrolyte membrane water electrolysis, Korean Journal of Chemical Engineering, 21, 1-9 (2018).   DOI
24 C. A. Linkous, H. R. Anderson, R. W. Kopitzke, and G. L. Nelson, Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures, International Journal of Hydrogen Energy, 23, 525-529 (1998).   DOI
25 C. A. Linkous, H. R. Anderson, R. W. Kopitzke, and G. L. Nelson, Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures, International Journal of Hydrogen Energy, 23, 525-529 (1998).   DOI
26 R. C. Asuncion and M. S. Lee, Impacts of Sea Level Rise on Economic Growth in Developing Asia, Asian Development Bank (ADB) Economics Working Paper Series, No. 507 (2017).
27 K. W. Cho and J. H. Maeng, Some thoughts on direction to cope with the sea level rise in Korea, Journal of the Korean Society for Marine Environment and Energy, 10, 227-234 (2007).
28 B. P. Bloomfield and R. Coombs, Information technology, control and power: The centralization and decentralization debate revisited, Journal of Management Studies, 29, 459-459 (1992).   DOI
29 I. E. Bioenergy and A. Bioenergy, Land use change and climate change mitigation, Report for Policy Advisors and Policy Makers. IEA Bioenergy: ExCo, 3, 1-62 (2010).
30 W. Xing, Overcharge tolerance phenomenon in polymer lithium ion cells, In: Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No. 02TH8576), 191-194, Long Beach, CA, USA (2002).
31 J. P. Masson, R. Molina, E. Roth, G. Gaussens, and F. Lemaire, Obtention and evaluation of polyethylene-based solid polymer electrolyte membranes for hydrogen production, International Journal of Hydrogen Energy, 7, 167-171 (1982).   DOI
32 J. Gibbins and H. Chalmers, Carbon capture and storage, Energy Policy, 36, 4317-4322 (2008).   DOI
33 N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, and M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications, Journal of the American Chemical Society, 128, 1762-1769 (2006).   DOI
34 T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, Proton-conducting polymers derived from poly (ether-etherketone) and poly (4-phenoxybenzoyl-1,4-phenylene), Solid State Ionics, 106, 219-225 (1998).   DOI
35 F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: Candidates for new proton exchange membranes, Journal of Membrane Science, 197, 231-242 (2002).   DOI
36 T. Soczka-Guth, J. Baurmeister, G. Frank, and R. Knauf, Method for producing a membrane used to operate fuel cells and electrolyzers, U.S. Patent 6,355,149 (2002).
37 N. Ramaswamy and S. Mukerjee, Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: Acid versus alkaline media, Advances in Physical Chemistry, 2012, 1-17 (2012).
38 K. E. Ayers, E. B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki, Research advances towards low cost, high efficiency PEM electrolysis, ECS Transactions, 33, 3-15 (2010).
39 S. Lee, J. Ann, H. Lee, J. H. Kim, C. S. Kim, T. H. Yang, and B Bae, Synthesis and characterization of crosslink-free highly sulfonated multi-block poly (arylene ether sulfone) multi-block membranes for fuel cells, Journal of Materials Chemistry A, 3, 1833-1836 (2015).   DOI
40 S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells, Membrane Journal, 26, 1-13 (2016).   DOI
41 M. Ni, D. Y. C. Leung, M. K. H. Leung, and K. Sumathy, An overview of hydrogen production from biomass, Fuel Processing Technology, 87, 461-472 (2006).   DOI
42 R. A. Betts, C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy, El Nino and a record $CO_2$ rise, Nature Climate Change, 6, 806-810 (2016).   DOI
43 C. K. Park, Climate change; Its impacts and our strategy to address it, Environmental Engineering Research, 30, 1179-1182 (2008).
44 X. Wenguo and C. Yingying, Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors, Energy & Fuels, 21, 2272-2277 (2007).   DOI
45 S. Ahmed and M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells, International Journal of Hydrogen Energy, 26, 291-301 (2001).   DOI
46 G. J. Hwang, K. S. Kang, H. J. Han, and J. W. Kim, Technology trend for water electrolysis hydrogen production by the patent analysis, Transactions of the Korean Hydrogen and New Energy Society, 18, 95-108 (2007).
47 G. J. Hwang, K. S. Kang, H. J. Han, and J. W. Kim, Technology trend for water electrolysis hydrogen production by the patent analysis, Transactions of the Korean Hydrogen and New Energy Society, 18, 95-108 (2007).
48 M. J. Lavorante, C. Y. Reynoso, and J. I. Franco, Water electrolysis with $Zirfon^{(R)}$ as separator and NaOH as electrolyte, Desalination and Water Treatment, 56, 3647-3653 (2015).   DOI
49 K. Moon and D. Pak, The characteristics of hydrogen production according to electrode materials in alkaline water electrolysis, Jounal of Energy Engineering, 24, 33-39 (2015).   DOI
50 F. e. Chakik, M. Kaddami, and M. Mikou, Effect of operating parameters on hydrogen production by electrolysis of water, International Journal of Hydrogen Energy, 42, 25550-25557 (2017).   DOI
51 V. Schroder, B. Emonts, H. Janssen, and H. P. Schulze, Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar, Chemical Engineering & Technology, 27(8), 847-851 (2004).   DOI
52 G. J. Hwang, S. G. Lim, S. Y. Bong, C. H. Ryu, and H. S. Choi, Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis, Korean Journal of Chemical Engineering, 32, 1896-1901 (2015).   DOI
53 H. Wendt and H. Hofmann, Ceramic diaphragms for advanced alkaline water electrolysis, Journal of Applied Electrochemistry, 19, 605-610 (1989).   DOI
54 V. M. Rosa, M. B. F. Santos, and E. P. Da Silva, New materials for water electrolysis diaphragms, International Journal of Hydrogen Energy, 20, 697-700 (1995).   DOI
55 S. Lee, J. Ann, H. Lee, J. H. Kim, C. S. Kim, T. H. Yang, and B. Bae, Synthesis and characterization of crosslink-free highly sulfonated multi-block poly (arylene ether sulfone) multi-block membranes for fuel cells, Journal of Materials Chemistry A, 3, 1833-1836 (2015).   DOI
56 B. Bae, K. Miyatake, and M. Watanabe, Alternative hydrocarbon membranes by step growth, in: M. Krzysztof and M. Martin (eds.), Polymer Science: A Comprehensive Reference, Ch. 10.34, 621-650, Elsevier, Amsterdam, The Netherlands (2012).
57 S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, and V. N. Fateev, Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis, International Journal of Hydrogen Energy, 34, 5986-5991 (2009).   DOI
58 M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, and Z. Ogumi, Gas crossover and membrane degradation in polymer electrolyte fuel cells, Electrochimica Acta, 51, 5746-5753 (2006).   DOI
59 H. Vogt, On the gas-evolution efficiency of electrodes I - Theoretical, Electrochimica Acta, 56, 1409-1416 (2011).   DOI