Browse > Article
http://dx.doi.org/10.14478/ace.2019.1036

Efficient Synthetic Routes of Biomass-derived Platform Chemicals  

Irshad, Mobina (Department of Chemical Engineering, Kangwon National University)
Lee, Seongwoo (Department of Chemical Engineering, Kangwon National University)
Choi, Eunju (Department of Chemical Engineering, Kangwon National University)
Kim, Jung Won (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.3, 2019 , pp. 280-289 More about this Journal
Abstract
5-hydroxymethylfurfural (HMF) and its derivatives, 2,5-furandicarboxylic acid (FDCA) or 2,5-diformylfuran (DFF), are regarded as the "sleeping giants" owing to their wide range of applications and a good alternative source for the production of significant chemicals in almost all kind of industries. This mini-review briefly covers the aspects related to the syntheses, transformation, and applications for the biomass-derived platform chemicals from past to most recent. Many scientific efforts have continuously been made to find out the environmental benign applicable ways in order to achieve the full advantage of these renewable materials because of not only to protect the globe but also shield the future of new generations. One of the best solutions could be the development and utilization of platform chemicals from the natural biomass.
Keywords
5-hydroxymethylfurfural (HMF); 2,5-furandicarboxylic acid (FDCA); 2,5-diformylfuran (DFF); Biomass-derived; Platform chemicals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Liu, H. Ding, Q. Xu, W. Zhong, D. Yin, and S. Su, Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2, 5-diformylfuran using sodium nitrite, J. Energy Chem., 25, 117-121 (2016).   DOI
2 Q. Wang, W. Hou, T. Meng, Q. Hou, Y. Zhou, and J. Wang, Direct synthesis of 2,5-diformylfuran from carbohydrates via carbonizing polyoxometalate based mesoporous poly(ionic liquid), Catal. Today, 319, 57-65 (2019).   DOI
3 D. Song, S. An, B. Lu, Y. Guo, and J. Leng, Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate, Appl. Catal. B, 179, 445-457 (2015).   DOI
4 G. D. Yadav and A. R. Yadav, Synthesis of ethyl levulinate as fuel additives using heterogeneous solid superacidic catalysts: Efficacy and kinetic modeling, Chem. Eng. J., 243, 556-563 (2014).   DOI
5 L. Peng, L. Lin, H. Li, and Q. Yang, Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts, Appl. Energy, 88, 4590-4596 (2011).   DOI
6 Q. N. Xia, Q. Cuan, X. H. Liu, X.Q. Gong, G. Z. Lu, and Y. Q. Wang, $Pd/NbOPO_{4}$ Multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans, Angew. Chem. Int. Ed., 53, 9755-9760 (2014).   DOI
7 K. Pupovac and R. Palkovits, $Cu/MgAl_{2}O_{4}$as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation, Chem. Sus. Chem., 6, 2103-2110 (2013).   DOI
8 F. Kerdi, H. Ait Rass, C. Pinel, M. Besson, G. Peru, B. Leger, S. Rio, E. Monflier, and A. Ponchel, Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA, Appl. Catal. A, 506, 206-219 (2015).   DOI
9 A. Lolli, R. Amadori, C. Lucarelli, M. G. Cutrufello, E. Rombi, F. Cavani, and S. Albonetti, Hard-template preparation of Au/$CeO_{2}$ mesostructured catalysts and their activity for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Microporous Mesoporous Mater., 226, 466-475 (2016).   DOI
10 F. Wang, Z. Yuan, B. Liu, S. Chen, and Z. Zhang, Catalytic oxidation of biomass derived 5-hydroxymethylfurfural (HMF) over Ru III-incorporated zirconium phosphate catalyst, J. Ind. Eng. Chem., 38, 181-185 (2016).   DOI
11 Z. Zhang, J. Zhen, B. Liu, K. Lv, and K. Deng, Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst, Green Chem., 17, 1308-1317 (2015).   DOI
12 H. Xia, J. An, M. Hong, S. Xu, L. Zhang, and S. Zuo, Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-difurancarboxylic acid over Pd-Au nanoparticles supported on Mg-Al hydrotalcite, Catal. Today, 319, 113-120 (2019).   DOI
13 R. O. Rajesh, T. K. Godan, A. K. Rai, D. Sahoo, and A. P. Binod, Biosynthesis of 2,5-furan dicarboxylic acid by Aspergillus flavus APLS-1: Process optimization and intermediate product analysis, Bioresour. Technol., 284, 155-160 (2019).   DOI
14 B. Sang, J. Li, X. Tian, F. Yuan, and Y. Zhu, Selective aerobic oxidation of the 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold nanoparticles supported on graphitized carbon: Study on reaction pathways, Mol. Catal., 470, 67-74 (2019).   DOI
15 G. Shen, S. Zhang, Y. Lei, Z. Chen, and G. Yin, Synthesis of 2,5-furandicarboxylic acid by catalytic carbonylation of renewable furfural derived 5-bromofuroic acid, Mol. Catal., 455, 204-209 (2018).   DOI
16 D. Yan, J. Xin, C. Shi, X. Lu, L. Ni, G. Wang, and S. Zhang, Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in ionic liquids, Chem. Eng. J., 323, 473-482 (2017).   DOI
17 F. Yang, Y. Ding, J. Tang, S. Zhou, B. Wang, and Y. Kong, Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation, Mol. Catal., 435, 144-155 (2017).   DOI
18 H. Yuan, J. Li, H.-d. Shin, G. Du, J. Chen, Z. Shi, and L. Liu, Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60, Bioresour. Technol., 247, 1184-1188 (2018).   DOI
19 K. Ghosh, R. A. Molla, M. A. Iqubal, S. S. Islam, and S. M. Islam, Ruthenium nanoparticles supported on N-containing mesoporous polymer catalyzed aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF), Appl. Catal. A, 520, 44-52 (2016).   DOI
20 C. A. Antonyraj, J. Jeong, B. Kim, S. Shin, S. Kim, K. Y. Lee, and J. K. Cho, Selective oxidation of HMF to DFF using $Ru/{\gamma}$ -alumina catalyst in moderate boiling solvents toward industrial production, J. Ind. Eng. Chem., 19, 1056-1059 (2013).   DOI
21 B. Ma, Y. Wang, X. Guo, X. Tong, C. Liu, Y. Wang, and X. Guo, Photocatalytic synthesis of 2,5-diformylfuran from 5-hydroxymethyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides, Appl. Catal. A, 552, 70-76 (2018).   DOI
22 J. Nie, J. Xie, and H. Liu, Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, Chin. J. Catal., 34, 871-875 (2013).   DOI
23 S. Wang, Z. Zhang, B. Liu, and J. Li, Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst, Ind. Eng. Chem. Res., 53, 5820-5827 (2014).   DOI
24 Y. Zhu, X. Liu, M. Shen, Y. Xia, and M. Lu, Nano-ruthenium particles supported on a core-shell shuttle: As an efficient lipophilic catalyst for the aerobic oxidation of biomass-derived 5-(hydroxymethyl)furfural, Catal. Commun., 63, 21-25 (2015).   DOI
25 Y. Zhu, M. Shen, Y. Xia, and M. Lu, $Au/MnO_{2}$ nanostructured catalysts and their catalytic performance for the oxidation of 5-(hydroxymethyl)furfural, Catal. Commun., 64, 37-43 (2015).   DOI
26 F. W. Lichtenthaler, Unsaturated O- and N-heterocycles from carbohydrate feedstocks, Acc. Chem. Res., 35, 728-737 (2002).   DOI
27 R. M. de Almeida, J. Li, C. Nederlof, P. O'Connor, M. Makkee, and J. A. Moulijn, Cellulose conversion to isosorbide in molten salt hydrate media, Chem. Sus. Chem., 3, 325-328 (2010).   DOI
28 X. Ge, F. Xu, and Y. Li, Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives, Bioresour. Technol., 205, 239-249 (2016).   DOI
29 K. H. Kobayashi H. Shrotri A. Techikawara, and K. Fukuoka, Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst, Chem. Sci., 7, 692-696 (2016).   DOI
30 H. Wang, C. Zhu, D. Li, Q. Liu, J. Tan, C. Wang, C. Cai, and L. Ma, Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran, Renew. Sust. Energy Rev., 103, 227-247 (2019).   DOI
31 C. H. Christensen, J. Rass-Hansen, C. C. Marsden, E. Taarning, and K. Egeblad, The renewable chemicals industry, Chem. Sus. Chem., 1, 283-289 (2008).   DOI
32 J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates, Green Chem., 12, 539-554 (2010).   DOI
33 X. Han, L. Geng, Y. Guo, R. Jia, X. Liu, Y. Zhang, and Y. Wang, Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst, Green Chemistry, 18, 1597-1604 (2016).   DOI
34 Z. Sun, S. Wang, X. Wang, and Z. Jiang, Lysine functional heteropolyacid nanospheres as bifunctional acid-base catalysts for cascade conversion of glucose to levulinic acid, Fuel, 164, 262-266 (2016).   DOI
35 N. A. S. Ramli and N. A. S. Amin, Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance, Appl. Catal. B, 163, 487-498 (2015).   DOI
36 B. Siyo, M. Schneider, J. Radnik, M. M. Pohl, P. Langer, and N. Steinfeldt, Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials, Appl. Catal. A, 478, 107-116 (2014).   DOI
37 A. Jain, S. C. Jonnalagadda, K. V. Ramanujachary, and A. Mugweru, Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst, Catal. Commun., 58, 179-182 (2015).   DOI
38 X. Han, C. Li, Y. Guo, X. Liu, Y. Zhang, and Y. Wang, N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Appl. Catal. A, 526, 1-8 (2016).   DOI
39 S. Wang, B. Liu, Z. Yuan, and Z. Zhang, Aerobic oxidation of 5-hydroxymethylfurfural into furan compounds over Mo-hydroxyapatite-encapsulated magnetic ${\gamma}-Fe_{2}O_{3}$, J. Taiwan Inst. Chem. Eng., 58, 92-96 (2016).   DOI
40 Z. Sun, M. Cheng, H. Li, T. Shi, M. Yuan, X. Wang, and Z. Jiang, One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis, RSC Adv., 2, 9058-9065 (2012).   DOI
41 G. Lv, H. Wang, Y. Yang, T. Deng, C. Chen, Y. Zhu, and X. Hou, Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran, ACS Catal., 5, 5636-5646 (2015).   DOI
42 Z. Zhang, Z. Yuan, D. Tang, Y. Ren, K. Lv, and B. Liu, Iron oxide encapsulated by ruthenium hydroxyapatite as heterogeneous catalyst for the synthesis of 2,5-diformylfuran, Chem. Sus. Chem., 7, 3496-3504 (2014).   DOI
43 J. Nie, J. Xie, and H. Liu, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts, J. Catal., 301, 83-91 (2013).   DOI
44 A. Takagaki, M. Takahashi, S. Nishimura, and K. Ebitani, One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts, ACS Catal., 1, 1562-1565 (2011).   DOI
45 G. Yi, S. P. Teong, and Y. Zhang, Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst, Green Chem., 18, 979-983 (2016).   DOI
46 B. Sarmah and R. Srivastava, Selective two-step synthesis of 2,5-diformylfuran from monosaccharide, disaccharide, and polysaccharide using H-beta and octahedral $MnO_2$ molecular sieves, Mol. Catal., 462, 92-103 (2019).   DOI
47 F. Neatu, R. S. Marin, M. Florea, N. Petrea, O. D. Pavel, and V. I. Parvulescu, Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts, Appl. Catal. B, 180, 751-757 (2016).   DOI
48 L. Gao, K. Deng, J. Zheng, B. Liu, and Z. Zhang, Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin, Chem. Eng. J., 270, 444-449 (2015).   DOI
49 T. Gao, J. Chen, W. Fang, Q. Cao, W. Su, and F. Dumeignil, Ru/MnXCe1OY catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation, J. Catal., 368, 53-68 (2018).   DOI
50 X. Tong, L. Yu, H. Chen, X. Zhuang, S. Liao, and H. Cui, Highly efficient and selective oxidation of 5-hydroxymethylfurfural by molecular oxygen in the presence of $Cu-MnO_{2}$ catalyst, Catal. Commun., 90, 91-94 (2017).   DOI
51 J. Nie and H. Liu, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on manganese oxide catalysts, J. Catal., 316, 57-66 (2014).   DOI
52 F. Neatu, N. Petrea, R. Petre, V. Somoghi, M. Florea, and V. I. Parvulescu, Oxidation of 5-hydroxymethyl furfural to 2,5-diformylfuran in aqueous media over heterogeneous manganese based catalysts, Catal. Today, 278, 66-73 (2016).   DOI
53 B. Liu, Z. Zhang, K. Lv, K. Deng, and H. Duan, Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide, Appl. Catal. A, 472, 64-71 (2014).   DOI
54 L. Ding, W. Yang, L. Chen, H. Cheng, and Z. Qi, Fabrication of spinel $CoMn_{2}O_{4}$ hollow spheres for highly selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, Catal. Today, in press (2018).
55 L. Chen, W. Yang, Z. Gui, S. Saravanamurugan, A. Riisager, W. Cao, and Z. Qi, MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran, Catal. Today, 319, 105-112 (2019).   DOI
56 A. Gandini, Polymers from renewable resources: A challenge for the future of macromolecular materials, Macromolecules., 41, 9491-9504 (2008).   DOI
57 A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, and C. A. M. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem., 13, 754-793 (2011).   DOI
58 U. P. M. Kroger and K. D. Vorlop, A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose, Top. Catal., 13, 237-242 (2000).   DOI
59 G. A. Halliday, R. J. Young, and V. V. Grushin, One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose, Org. Lett., 5, 2003-2005 (2003).   DOI
60 A. S. Amarasekara, D. Green, and E. McMillan, Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-salen catalysts, Catal. Commun., 9, 286-288 (2008).   DOI
61 A. F. V. Grote and B. Tollens, Untersuchungen uber kohlenhydrate. I. Ueber die bei Einwirkung von Schwefelsaure auf Zucker entstehende Saure (Levulinsaure), Justus Liebigs Ann. Chem., 175, 181-204 (1875).   DOI
62 B. F. M. Kuster, 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture, Starke (Starch), 42, 314-321 (1990).   DOI
63 G. Portillo Perez, A. Mukherjee, and M. J. Dumont, Insights into HMF catalysis, J. Ind. Eng. Chem., 70, 1-34 (2019).   DOI
64 C. Zhou, W. Shi, X. Wan, Y. Meng, Y. Yao, Z. Guo, Y. Dai, C. Wang, and Y. Yang, Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst, Catal. Today, 330, 92-100 (2019).   DOI
65 T. Gao, Y. Yin, W. Fang, and Q. Cao, Highly dispersed ruthenium nanoparticles on hydroxyapatite as selective and reusable catalyst for aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under base-free conditions, Mol. Catal., 450, 55-64 (2018).   DOI
66 T. Gao, Y. Yin, G. Zhu, Q. Cao, and W. Fang, $Co_{3}O_{4}$ NPs decorated Mn-Co-O solid solution as highly selective catalyst for aerobic base-free oxidation of 5-HMF to 2,5-FDCA in water, Catal. Today, in press (2019).
67 T. Gao, T. Gao, W. Fang, and Q. Cao, Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst, Mol. Catal., 439, 171-179 (2017).   DOI
68 S. Hu, Z. Zhang, Y. Zhou, B. Han, H. Fan, W. Li, J. Song, and Y. Xie, Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials, Green Chem., 10, 1280-1283 (2008).   DOI
69 Y. Yan, K. Li, J. Zhao, W. Cai, Y. Yang, and J. M. Lee, Nanobelt-arrayed vanadium oxide hierarchical microspheres as catalysts for selective oxidation of 5-hydroxymethylfurfural toward 2,5-diformylfuran, Appl. Catal. B, 207, 358-365 (2017).   DOI
70 I. K. M. Yu and D. C. W. Tsang, Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms, Bioresour. Technol., 238, 716-732 (2017).   DOI
71 J. Lewkowski, Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives, ARKIVOC, 17-54 (2001).
72 X. Liu, J. Xiao, H. Ding, W. Zhong, Q. Xu, S. Su, and D. Yin, Catalytic aerobic oxidation of 5-hydroxymethylfurfural over $VO^{2+}$ and $Cu^{2+}$ immobilized on amino functionalized SBA-15, Chem. Eng. J., 283, 1315-1321 (2016).   DOI
73 Z. Miao, Y. Zhang, X. Pan, T. Wu, B. Zhang, J. Li, T. Yi, Z. Zhang, and X. Yang, Superior catalytic performance of $Ce1-xBixO_{2}-{\delta}$ solid solution and $Au/Ce1-xBixO_{2}-{\delta}$ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution, Catal. Sci. Technol., 5, 1314-1322 (2015).   DOI
74 B. Liu, Y. Ren, and Z. Zhang, Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions, Green Chem., 17, 1610-1617 (2015).   DOI
75 J. Zhang, J. Li, Y. Tang, L. Lin, and M. Long, Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass, Carbohydr. Polym., 130, 420-428 (2015).   DOI
76 M. Ventura, A. Dibenedetto, and M. Aresta, Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water, Inorg. Chim. Acta, 470, 11-21 (2018).   DOI
77 J. Artz and R. Palkovits, Base-free aqueous-phase oxidation of 5-hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks, ChemSusChem, 8, 3832-3838 (2015).   DOI
78 X. Han, L. Geng, Y. Guo, R. Jia, X. Liu, Y. Zhang, and Y. Wang, Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst, Green Chem., 18, 1597-1604 (2016).   DOI
79 X. H. Zhou, K. H. Song, Z. H. Li, W. M. Kang, H. R. Ren, K. M. Su, M. L. Zhang, and B. W. Cheng, The excellent catalyst support of $Al_{2}O_{3}$ fibers with needle-like mullite structure and HMF oxidation into FDCA over CuO/$Al_{2}O_{3}$ fibers, Ceram. Int., 45, 2330-2337 (2019).   DOI
80 H. Zhou, H. Xu, and Y. Liu, Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Co/Mn-lignin coordination complexes-derived catalysts, Appl. Catal. B, 244, 965-973 (2019).   DOI
81 C. A. Antonyraj, N. T. T. Huynh, S. K. Park, S. Shin, Y. J. Kim, S. Kim, K. Y. Lee, and J. K. Cho, Basic anion-exchange resin (AER)-supported Au-Pd alloy nanoparticles for the oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furan dicarboxylic acid (FDCA), Appl. Catal. A, 547, 230-236 (2017).   DOI
82 X. Jia, J. Ma, M. Wang, Z. Du, F. Lu, F. Wang, and J. Xu, Promoted role of $Cu(NO_{3})_{2}$ on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over $VOSO_{4}$, Appl. Catal. A, 482, 231-236 (2014).   DOI
83 G. Lv, S. Chen, H. Zhu, M. Li, and Y. Yang, Pyridinic-nitrogen-dominated nitrogen-doped graphene stabilized Cu for efficient selective oxidation of 5-hydroxymethfurfural, Appl. Surf. Sci., 458, 24-31 (2018).   DOI
84 N. T. Le, P. Lakshmanan, K. Cho, Y. Han, and H. Kim, Selective oxidation of 5-hydroxymethyl-2-furfural into 2,5-diformylfuran over $VO^{2+}$ and $Cu^{2+}$ ions immobilized on sulfonated carbon catalysts, Appl. Catal. A, 464-465, 305-312 (2013).   DOI
85 A. Kumar and R. Srivastava, $FeVO_{4}$ decorated $-SO_{3}H$ functionalized polyaniline for direct conversion of sucrose to 2,5-diformylfuran & 5-ethoxymethylfurfural and selective oxidation reaction, Mol. Catal., 465, 68-79 (2019).   DOI
86 T. S. Hansen, I. Sadaba, E. J. Garcia-Suarez, and A. Riisager, Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions, Appl. Catal. A, 456, 44-50 (2013).   DOI
87 R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, and J. G. de Vries, Hydroxymethylfurfural, a versatile platform chemical made from renewable resources, Chem. Rev., 113, 1499-1597 (2013).   DOI
88 A. S. Amarasekara, L. D. Williams, and C. C. Ebede, Mechanism of the dehydration of d-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at $150\;^{\circ}C$: an NMR study, Carbohydr. Res., 343, 3021-3024 (2008).   DOI
89 M. E. Zakrzewska, E. B. Łukasik, and R. B. Lukasik, Ionic liquid-mediated formation of 5-hydroxymethylfurfural - a promising biomass-derived building block, Chem. Rev., 111, 397-417 (2011).   DOI
90 D. Liu and E. Y. X. Chen, Organocatalysis in biorefining for biomass conversion and upgrading, Green Chem., 16, 964-981 (2014).   DOI
91 Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic, Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates, Nature, 447, 982-985 (2007).   DOI
92 Y. B. Huang, M. Y. Chen, L. Yan, Q. X. Guo, and Y. Fu, Nickel-tungsten carbide catalysts for the production of 2,5-Dimethylfuran from biomass-derived molecules, Chem. Sus. Chem., 7, 1068-1072 (2014).   DOI
93 C. Zhou, W. Deng, X. Wan, Q. Zhang, Y. Yang, and Y. Wang, Functionalized carbon nanotubes for biomass conversion: The Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst, ChemCatChem, 7, 2853-2863 (2015).   DOI
94 A. B. Gawade, A. V. Nakhate, and G. D. Yadav, Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over $MnFe_{2}O_{4}$ catalyst, Catal. Today, 309, 119-125 (2018).   DOI
95 D. Gupta, K. K. Pant, and B. Saha, Titania nanoparticles embedded in functionalized carbon for the aqueous phase oxidation of 5-hydroxymethylfurfural, Mol. Catal., 435, 182-188 (2017).   DOI
96 C. Fang, J. J. Dai, H. J. Xu, Q. X. Guo, and Y. Fu, Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature, Chin. Chem. Lett., 26, 1265-1268 (2015).   DOI
97 D. Baruah, F. L. Hussain, M. Suri, U. P. Saikia, P. Sengupta, D. K. Dutta, and D. Konwar, $Bi\;(NO_{3})_{3}{\cdot}5H_{2}O$ and cellulose mediated Cu-NPs - A highly efficient and novel catalytic system for aerobic oxidation of alcohols to carbonyls and synthesis of DFF from HMF, Catal. Commun., 77, 9-12 (2016).   DOI
98 Y. Liu, M. A. Mellmer, D. M. Alonso, and J. A. Dumesic, Effects of water on the copper-catalyzed conversion of hydroxymethylfurfural in tetrahydrofuran, Chem. Sus. Chem., 8, 3983-3986 (2015).   DOI
99 J. Shi, Y. Wang, X. Yu, W. Du, and Z. Hou, Production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over reduced graphene oxides supported Pt catalyst under mild conditions, Fuel, 163, 74-79 (2016).   DOI
100 Z. Yuan, Z. Zhang, J. Zheng, and J. Lin, Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates, Fuel, 150, 236-242 (2015).   DOI
101 S. Siankevich, G. Savoglidis, Z. Fei, G. Laurenczy, D. T. L. Alexander, N. Yan, and P. J. Dyson, A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions, J. Catal., 315, 67-74 (2014).   DOI
102 N. K. Gupta, S. Nishimura, A. Takagaki, and K. Ebitani, Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure, Green Chem., 13, 824-827 (2011).   DOI
103 X. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang, and Y. Wang, Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles, ACS Catal., 4, 2175-2185 (2014).   DOI
104 N. Masoud, B. Donoeva, and P. E. de Jongh, Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid, Appl. Catal. A, 561, 150-157 (2018).   DOI
105 M. J. Kang, H. Park, J. Jegal, S. Y. Hwang, Y. S. Kang, and H. G. Cha, Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media, Appl. Catal. B, 242, 85-91 (2019).   DOI
106 H. Liu, X. Cao, T. Wang, J. Wei, X. Tang, X. Zeng, Y. Sun, T. Lei, S. Liu, and L. Lin, Efficient synthesis of bio-monomer 2,5-furandicarboxylic acid from concentrated 5-hydroxymethylfurfural or fructose in $DMSO/H_{2}O$ mixed solvent, J. Ind. Eng. Chem., DOI: 10.1016/j.jiec.2019.04.038 (2019).
107 D. X. Martinez-Vargas, J. Rivera De La Rosa, L. Sandoval-Rangel, J. L. Guzman-Mar, M. A. Garza-Navarro, C. J. Lucio-Ortiz, and D. A. De Haro-Del Rio, 5-Hydroxymethylfurfural catalytic oxidation under mild conditions by Co (II), Fe (III) and Cu (II) salen complexes supported on SBA-15: Synthesis, characterization and activity, Appl. Catal. A, 547, 132-145 (2017).   DOI
108 C. Megias-Sayago, A. Lolli, S. Ivanova, S. Albonetti, F. Cavani, and J. A. Odriozola, $Au/Al_{3}O_{3}$ - Efficient catalyst for 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid, Catal. Today, DOI: 10.1016/j.cattod.2018.04.024 (2018).
109 S. Wang, Z. Zhang, and B. Liu, Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable $Fe_{3}O_{4}$-CoOx magnetite nanocatalyst, ACS Sustain. Chem. Eng., 3, 406-412 (2015).   DOI
110 B. Saha, D. Gupta, M. M. Abu-Omar, A. Modak, and A. Bhaumik, Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid, J. Catal., 299, 316-320 (2013).   DOI
111 S. Albonetti, A. Lolli, V. Morandi, A. Migliori, C. Lucarelli, and F. Cavani, Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal-support interaction, Appl. Catal. B, 163, 520-530 (2015).   DOI
112 Q. Wu, Y. He, H. Zhang, Z. Feng, Y. Wu, and T. Wu, Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on metal-free $g-C_{3}N_{4}$ under visible light irradiation, Mol. Catal., 436, 10-18 (2017).   DOI
113 H. Zhang, Z. Feng, Y. Zhu, Y. Wu, and T. Wu, Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on $WO_{3}/g-C_{3}N_{4}$ composite under irradiation of visible light, J. Photochem. Photobiol. A, 371, 1-9 (2019).   DOI
114 L. Zhang, X. Luo, and Y. Li, A new approach for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid without using transition metal catalysts, J. Energy Chem., 27, 243-249 (2018).   DOI
115 S. Zhang, X. Sun, Z. Zheng, and L. Zhang, Nanoscale center-hollowed hexagon $MnCo_{2}O_{4}$ spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Catal. Commun., 113, 19-22 (2018).   DOI
116 H. Chen, J. Shen, K. Chen, Y. Qin, X. Lu, P. Ouyang, and J. Fu, Atomic layer deposition of Pt nanoparticles on low surface area zirconium oxide for the efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Appl. Catal. A, 555, 98-107 (2018).   DOI
117 F. Koopman, N. Wierckx, J. H. de Winde, and H. J. Ruijssenaars, Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid, Bioresour. Technol., 101, 6291-6296 (2010).   DOI
118 D. K. Mishra, J. K. Cho, and Y. J. Kim, Facile production of 2,5-diformylfuran from base-free oxidation of 5-hydroxymethyl furfural over manganese-cobalt spinels supported ruthenium nanoparticles, J. Ind. Eng. Chem., 60, 513-519 (2018).   DOI
119 M. O. Kompanets, O. V. Kushch, Y. E. Litvinov, O. L. Pliekhov, K. V. Novikova, A. O. Novokhatko, A. N. Shendrik, A. V. Vasilyev, and I. O. Opeida, Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran with molecular oxygen in the presence of N-hydroxyphthalimide, Catal. Commun., 57, 60-63 (2014).   DOI
120 C. A. Antonyraj, B. Kim, Y. Kim, S. Shin, K. Y. Lee, I. Kim, and J. K. Cho, Heterogeneous selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF, Catal. Commun., 57, 64-68 (2014).   DOI
121 J. Zhao, X. Chen, Y. Du, Y. Yang, and J. M. Lee, Vanadium-embedded mesoporous carbon microspheres as effective catalysts for selective aerobic oxidation of 5-hydroxymethyl-2-furfural into 2, 5-diformylfuran, Appl. Catal. A, 568, 16-22 (2018).   DOI
122 M. Cui, R. Huang, W. Qi, R. Su, and Z. He, Synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural in ethyl acetate using 4-acetamido-TEMPO as a recyclable catalyst, Catal. Today, 319, 121-127 (2019).   DOI
123 A. Lolli, S. Albonetti, L. Utili, R. Amadori, F. Ospitali, C. Lucarelli, and F. Cavani, Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd-Au nanoparticles, Appl. Catal. A, 504, 408-419 (2015).   DOI
124 H. Li, S. Saravanamurugan, S. Yang, and A. Riisager, Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts, Green Chem., 18, 726-734 (2016).   DOI
125 H. Wang, T. Deng, Y. Wang, X. Cui, Y. Qi, X. Mu, X. Hou, and Y. Zhu, Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural, Green Chem., 15, 2379-2383 (2013).   DOI
126 Y. Yang, M. M. Abu-Omar, and C. Hu, Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate, Appl. Energy, 99, 80-84 (2012).   DOI
127 S. Albonetti, T. Pasini, A. Lolli, M. Blosi, M. Piccinini, N. Dimitratos, J. A. Lopez-Sanchez, D. J. Morgan, A. F. Carley, G. J. Hutchings, and F. Cavani, Selective oxidation of 5-hydroxymethyl-2-furfural over $TiO_{2}$-supported gold-copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio, Catal. Today, 195, 120-126 (2012).   DOI
128 S. E. Davis, L. R. Houk, E. C. Tamargo, A. K. Datye, and R. J. Davis, Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts, Catal. Today, 160, 55-60 (2011).   DOI