Browse > Article
http://dx.doi.org/10.14478/ace.2019.1035

Titanium Dioxide Nanomaterials and its Derivatives in the Remediation of Water: Past, Present and Future  

Tiwari, Alka (Department of Physics, National Institute of Technology)
Shukla, Alok (Department of Physics, National Institute of Technology)
Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences, Mizoram University)
Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
Shin, Hyun-Gon (Department of Energy and Environmental Engineering Shinhan University)
Lee, Seung-Mok (Department of Environmental Engineering, Catholic Kwandong University)
Publication Information
Applied Chemistry for Engineering / v.30, no.3, 2019 , pp. 261-279 More about this Journal
Abstract
The aim of this review article is to summarize the role of titanium oxide ($TiO_2$) nanomaterials in the remediation of the aquatic environment contaminated with various emerging pollutants. The advanced oxidation process led by the semiconductor $TiO_2$ is an impetus in the remediation technology. Therefore, a vast number of literature works are available in this area. Further, the role of modified $TiO_2$ or thin film materials were discussed in the review. Also, the Localized Surface Plasmon Resonance (LSPR) effect of using noble metaldoped $TiO_2$ played an interesting role in the remediation process.
Keywords
Titanium dioxide; Nanomaterials; Remediation; Aquatic environment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Wold, Photocatalytic properties of titanium dioxide ($TiO_{2}$), Chem. Mater., 5, 280-283 (1993).   DOI
2 C. Y. Wang, C. Y. Liu, X. Zheng, J. Chen, and T. Shen, The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine $TiO_{2}$ particles, Colloids Surf. A, 131, 271-280 (1998).   DOI
3 J. M. Hermann, J. Disdier, M. N. Mozzanega, and P. Pichat, Heterogeneous photocatalysis: In situ photoconductivity study of $TiO_{2}$ during oxidation of isobutane into acetone, J. Catal., 60, 369-377 (1979).   DOI
4 A. Henglein, Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition, J. Phys. Chem., 83, 2209-2216 (1979).   DOI
5 J. M. Gerage, A. P. Gasques Meira, and M. V. da Silva, Food and nutrition security: pesticide residues in food, Nutrire, 42:3 (2017).   DOI
6 R. M. Wersal and J. D. Madsen, Comparison of imazapyr and imazamox for control of parrotfeather (Myriophyllum aquaticum (Vell.) Verdc.), J. Aquat. Plant Manag., 45, 132-136 (2007).
7 M. Streal and D. J. Horner, Adsorption of highly soluble herbicides from water using activated carbon and hypercrosslinked polymers, Process Saf. Environ. Prot., 78, 363-382 (2000).   DOI
8 F. L. Souza, T. Q. Teodoro, V. M. Vasconcelos, F. L. Migliorini, P. C. F. Lima Gomes, N. G. Ferreira, M. R. Baldan, R. L. A. Haiduke, and M. R. V. Lanza, Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate, Chemosphere, 117, 596-603 (2014).   DOI
9 I. Bernabo, A. Guardia, R. Macirella, S. Sesti, A. Crescente, and E. Brunelli, Effects of long-term exposure to two fungicides, pyrimethanil and tebuconazole, on survival and life history traits of Italian tree frog (Hyla intermedia), Aquat. Toxicol., 172, 56-66 (2016).   DOI
10 National Center for Biotechnology Information, PubChem Compound Database; CID=91650, https://pubchem.ncbi.nlm.nih.gov/ compound/91650.
11 I. Christian M'Bra, P. Garcia-Munoz, P. Drogui, N. Keller, A. Trokourey, and D. Robert, Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with $TiO_{2}$ immobilized on SiC foams, J. Photochem. Photobiol. A, 368, 1-6 (2019).   DOI
12 M. W. Kadi, A. A. Ismail, R. M. Mohamed, and D. W. Bahnemann, Photodegradation of the herbicide imazapyr over mesoporous $In_{2}O_{3}-TiO_{2}$ nanocomposites with enhanced photonic efficiency, Sep. Purif. Technol., 205, 66-73 (2018).   DOI
13 R. A. Zayadi and F. A. Bakar, Comparative study on the performance of Au/F-$TiO_{2}$ photocatalyst synthesized from Zamzam water and distilled water under blue light irradiation, J. Photochem. Photobiol. A, 346, 338-350 (2017).   DOI
14 V. Subramanian, E. E. Wol, and P. V. Kamat, Catalysis with $TiO_{2}$/gold nanocomposites: Effect of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc., 126, 4943-4950 (2004).   DOI
15 L. G. Devi, B. Nagaraj, and K. E. Rajashekhar, Synergistic effect of Ag deposition and nitrogen doping in $TiO_{2}$ for the degradation of phenol under solar irradiation in presence of electron acceptor, Chem. Eng. J., 181-182, 259-266 (2012).   DOI
16 P. S. Ritonga, Air sebagai sarana peningkatan imtaq (Integrasi kimia dan agama) - Water as means of increasingly "faith and fear", Jurnal Sosial Budaya, 8, 267-276 (2011).
17 M. S. Rodrigues, D. Costa, R. P. Domingues, M. Apreutesei, P. Pedrosa, N. Martin, V. M. Correlo, R. L. Reis, E. Alves, N. P. Barradas, P. Sampaio, J. Borges, and F. Vaz, Optimization of nanocomposite Au/$TiO_{2}$ thin films towards LSPR optical-sensing, Appl. Surf. Sci., 438, 74-83 (2018).   DOI
18 L. Liu, X. Zhang, L. Yang, L. Ren, D. Wang, and J. Ye, Metal nanoparticles induced photocatalysis, Nat. Sci. Rev., 4, 761-780 (2017).   DOI
19 K. Kimura, S. Naya, Y. Jin-nouchi, and H. Tada, $TiO_{2}$ crystal form-dependence of the Au/$TiO_{2}$ plasmon photocalyst's activity, J. Phys. Chem. C, 116, 7111-7117 (2012).   DOI
20 M. J. Gazquez, J. P. Bolivar, R. Garcia-Tenorio, and F. Vaca, A review of the production cycle of titanium dioxide pigment, Mater. Sci. Appl., 05, 441-458 (2014).
21 X. Chen and S. S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891-2959 (2007).   DOI
22 H. Irie, Y. Watanable, and K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of $TiO_{2}$-xNx powders, J. Phys. Chem. B, 107, 5483-5486 (2003).   DOI
23 N. O. Gopal, H. H. Lo, T. F. Ke, C. H. Lee, C. C. Chou, J. D. Wu, S. C. Sheu, and S. C. Ke, Visible light active phosphorus-doped $TiO_{2}$ nanoparticles: An EPR evidence for the enhanced charge separation, J. Phys. Chem. C, 116, 16191-16197 (2012).   DOI
24 R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects, Chem. Rev., 114, 9824-9852 (2014).   DOI
25 P. Hlavinek, O. Bonacci, J. Marsalek, and I. Mahrikova, Dangerous pollutants (Xenobiotics) in Urban Water Cycle, Springer, Netherlands (2007).
26 C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, Enhanced nitrogen doping in $TiO_{2}$ nanoparticles, Nano Lett., 3, 1049-1051 (2003).   DOI
27 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269-271 (2001).   DOI
28 T. Suwannaruang, K. Kamonsuangkasem, P. Kidkhunthod, P. Chirawatkul, C. Saiyasombat, N. Chanlek, and K. Wantala, Influence of nitrogen content levels on structural properties and photocatalytic activities of nanorice-like N-doped $TiO_{2}$ with various calcination temperatures, Mater. Res. Bull., 105, 265-276 (2018).   DOI
29 C. D. Valentin and G. Pacchioni, Trends in non-metal doping of anatase $TiO_{2}$: B, C, N and F, Catal. Today, 206, 12-18 (2013).   DOI
30 W. Wang, C. Lu, Y. Ni, M. Su, and Z. Xu, A new sight on hydrogenation of F and N-F doped {0 0 1} facets dominated anatase $TiO_{2}$ for efficient visible light photocatalyst, Appl. Catal. B, 127, 28-35 (2012).   DOI
31 C. D. Valentin and G. Pacchioni, Reduced and n-type doped $TiO_{2}$: Nature of $Ti^{3+}$ species, J. Phys. Chem. C, 113, 20543-20552 (2009).   DOI
32 G. Wu, T. Nishikawa, B. Ohtani, and A. Chen, Synthesis and characterization of carbon-doped $TiO_{2}$ nanostructures with enhanced visible light response, Chem. Mater., 19, 4530-4537 (2007).   DOI
33 S. Wang, Y. Gao, S. Miao, T. Liu, L. Mu, R. Li, F. Fan, and C. Li, Positioning the water oxidation reaction sites in plasmonic photocatalysts, J. Am. Chem. Soc., 139, 11771-11778 (2017).   DOI
34 E. Kowalska, S. Rau, and B. Ohtani, Plasmonic titania photocatalysts active under UV and visible-light irradiation: Influence of gold amount, size and shape, J. Nanotechnol., 361853 (2012).
35 J. B. Priebe, J. Radnik, A. J. J. Lennox, M.-M. Pohl, M. Karnehl, D. Hollmann, K. Grabow, U. Bentrup, H. Junge, M. Beller, and A. Bruckner, Solar hydrogen production by Plasmonic Au-$TiO_{2}$ catalysis: Impact of synthesis protocol and $TiO_{2}$ phase on charge transfer efficiency and H2 evolution rates, ACS Catal., 5, 2137-2148 (2015).   DOI
36 S. Naya, K. Kimura, and H. Tada, One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium( IV) oxide Plasmon photocatalyst, ACS Catal., 3, 10-13 (2013).   DOI
37 Y. Tian and T. Tatsuma, Mechanisms and applications of plasmon- induced charge separation at $TiO_{2}$ films loaded with gold nanoparticles, J. Am. Chem. Soc., 127, 7632-7637 (2005).   DOI
38 T. Torimoto, H. Horibe, T. Kameyama, K. Okazaki, S. Ikeda, M. Matsumura A. Ishikawa, and H. Ishihara, Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles, J. Phys. Chem. Lett., 2, 2057-2062 (2011).   DOI
39 Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. P. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination, Nano Lett., 11, 1111-1116 (2011).   DOI
40 N. O. Gopal and M. H. Basha, $TiO_{2}$ nano-flakes with high activity obtained from phosphorus doped $TiO_{2}$ nanoparticles by hydrothermal method, Ceram. Int., 44, 22129-22134 (2018).   DOI
41 X. Wang, Z. Li, J. Shi, and Y. Yu, One-dimensional titanium dioxide nanomaterials nanowires nanorods and nanobelts, Chem. Rev., 114, 9346-9384 (2014).   DOI
42 W. G. Yang, Y. H. Yu, M. B. Starr, X. Yin, Z. D. Li, A. Kvit, S. F. Wang, P. Zhao, and X. D. Wang, Ferroelectric polarization- enhanced photoelectrochemical water splitting in $TiO_{2}$-$BaTiO_{3}$ core-shell nanowire photoanodes, Nano Lett., 15, 7574-7580 (2015).   DOI
43 Z. Yang, B. Wang, H. Cui, H. An, Y. Pan, and J. Zhai, Synthesis of crystal-controlled $TiO_{2}$ nanorods by a hydrothermal method: Rutile and brookite as highly active photocatalysts, J. Phys. Chem. C, 119, 16905-16912 (2015).   DOI
44 C. B. D. Marien, T. Cottineau, D. Robert, and P. Drogui, $TiO_{2}$ nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat, Appl. Catal. B, 194, 1-6 (2016).   DOI
45 L. G. Devi and K. E. Rajashekhar, A kinetic model based on non-linear regression analysis is proposed for the degradation of phenol under UV/solar light using nitrogen doped $TiO_{2}$, J. Mol. Catal. A, 334, 65-76 (2011).   DOI
46 T. U. Berendonk, C. M. Manaia, C. Merlin, D. Fatta-Kassinos, E. Cytryn, F. Walh, H. Burgmann, H. Sorum, M. Norstrom, M.-N. Pons, N. Kreuzinger, P. Huovinen, S. Stefani, T. Schwartz, V. Kisand, F. Baquero, and J. L. Martinez, Tackling antibiotic resistance: The environmental framework, Nat. Rev. Microbiol., 13, 310-317 (2015).   DOI
47 Y. Luo, et al., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473, 619-641 (2014).   DOI
48 W. M. M. Mahmouda, T. Rastogi, and K. Kummerer, Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water, Curr. Opin. Green Sustain. Chem., 6, 1-10 (2017).   DOI
49 A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, and S. M. Lee, Synthesis and characterization of $Ag^{0}(NPs)/TiO_{2}$ nanocomposite: Insight studies of triclosan removal from aqueous solutions, Environ. Technol., DOI: 10.1080/09593330.2019.1615127 (2019).
50 A. R. Ribeiro, O. C. Nunes, M. F. R. Pereira, and A. M. T. Silva, An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU, Environ. Int., 75, 33-51 (2015).   DOI
51 L. Yang, L. Xu, X. Bai, and P. Jin, Enhanced visible-light activation of persulfate by $Ti^{3+}$ self-doped $TiO_{2}$/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water, J. Hazard. Mater., 365, 107-117 (2019).   DOI
52 X. Chen, L. Liu, and F. Huang, Black titanium dioxide ($TiO_{2}$) nanomaterials, Chem. Soc. Rev., 44, 1861-1885 (2015).   DOI
53 P. A. Wilderer, Treatise on Water Science, Elsevier Science (2011).
54 K. Qian, B. C. Sweeny, A. C. Johnston-Peck, W. Niu, J. O. Graham, J. S. DuChene, J. Qiu, Y.-C. Wang, N. H. Engelhard, D. Su, E. A. Stach, and W. D. Wei, Surface plasmon driven water reduction: Gold nanoparticle size matters, J. Am. Chem. Soc., 136, 9842-9845 (2014).   DOI
55 A. Subramanian, Z. Pan, H. Li, L. Zhou, W. Li, Y. Qiu, Y. Xu, Y. Hou, C. Mu, and Y. Zhang, Synergistic promotion of photoelectrochemical water splitting efficiency of $TiO_{2}$ nanorods using metal-semiconducting nanoparticles, Appl. Surf. Sci., 420, 631-637 (2017).   DOI
56 C. Hu, X. Zhang, X. Li, Y. Yan, G. Xi, H. Yang, and H. Bai, Au photosensitized $TiO_{2}$ ultrathin nanosheets with 001 exposed facets, Chemistry, 20, 13557-13560 (2014).   DOI
57 J. S. Du Chene, B. C. Sweeny, A. C. Johnston-Peck, D. Su, E. A. Stach, and W. D. Wei, Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis, Angew. Chem. Int. Ed., 53, 7887-7891 (2014).   DOI
58 S. I. Naya, T. Niwa, T. Kume, and H. Tada, Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium (IV) oxide, Angew. Chem. Int. Ed., 53, 7305-7309 (2014).   DOI
59 H. Wang, T. You, W. Shi, J. Li, and L. Guo, Au/$TiO_{2}$/Au as a plasmonic coupling photocatalyst, J. Phys. Chem. C, 116, 6490-6494 (2012).   DOI
60 J. Low, S. Qiu, D. Xu, C. Jiang, and B. Cheng, Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded $TiO_{2}$ nanotube arrays for photocatalytic $CO_{2}$ reduction, Appl. Surf. Sci., 434, 423-432 (2018).   DOI
61 A. M. Selman and M. Husham, Calcination induced phase transformation of $TiO_{2}$ nanostructures and fabricated a Schottky diode as humidity sensor based on rutile phase, Sens. Biosensing Res., 11, 8-13 (2016).   DOI
62 S. Komatsuda, Y. Asakura, J. J. M. Vequizo, A. Yamakata, and S. Yin, Enhanced photocatalytic NOx decomposition of visible-light responsive $FTiO_{2}$/(N,C)-$TiO_{2}$ by charge transfer between F-$TiO_{2}$ and (N,C)-$TiO_{2}$ through their doping levels, Appl. Catal. B, 238, 358-364 (2018).   DOI
63 M. Hu, M. Fang, C. Tang, T. Yang, Z. Huang, Y. Liu, X. Wu, and X. Min, The effects of atmosphere and calcined temperature on photocatalytic activity of $TiO_{2}$ nanofibers prepared by electrospinning, Nanoscale Res. Lett., 8, 548 (2013).   DOI
64 X. F. Lei, X. X. Xue, H. Yang, C. Chen, X. Li, M. C. Niu, X. Y. Gao, and Y. T. Yang, Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped $TiO_{2}$ nano-materials, Appl. Surf. Sci., 332, 172-180 (2015).   DOI
65 A. A. Cavalheiro, L. C. S. Oliveira, and S. A. L. dos Santos, Structural aspects of anatase to rutile phase transition in titanium dioxide powders elucidated by the Rietveld method, Magdalena Janus, IntechOpen, DOI: 10.5772/intechopen.68601 (2017).   DOI
66 Y. Hu, H. Liu, X. Kong, and X. Guo, Effect of calcination on the visible light photocatalytic activity of N-doped $TiO_{2}$ prepared by the sol-gel method, J. Nanosci. Nanotechnol., 14, 3532-3537 (2014).   DOI
67 E. Katoueizadeh, S. M. Zebarjad, and K. Janghorban, Investigation of mechanical characteristics of functionalized cotton textiles by N-doped $TiO_{2}$ nanoparticles, Mater. Chem. Phys., 218, 239-245 (2018).   DOI
68 B. Liu, J. Wang, J. Yang, and X. Zhao, Charge carrier interfacial transfer pathways from $TiO_{2}$ and Au/$TiO_{2}$ nanorod arrays to electrolyte and the association with photocatalysis, Appl. Surf. Sci., 464, 367-375 (2019).   DOI
69 Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on $TiO_{2}$ nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting, Nano Lett., 13, 14-20 (2013).   DOI
70 S. Naya and H. Tada, Dependence of the plasmonic activity of Au/$TiO_{2}$ for the decomposition of 2-naphthol on the crystal form of $TiO_{2}$ and Au particle size, J. Catal., 364, 328-333 (2018).   DOI
71 S. C. Chan and M. A. Barteau, Preparation of highly uniform $Ag/TiO_{2}$ and Au/$TiO_{2}$ supported nanoparticle catalysts by photodeposition, Langmuir, 21, 5588-5595 (2005).   DOI
72 Lalliansanga, A. Tiwari, A. Shukla, D. Tiwari, and S. M. Lee, Nanocomposite Au NP/$TiO_{2}$ thin film in the efficient remediation of aqueous solutions contaminated with emerging micro-pollutants, Environ. Sci. Pollut. Res., 25, 20125-20140 (2018).   DOI
73 A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, and S.-M. Lee, Au-nanoparticle/nanopillars $TiO_{2}$ meso-porous thin films in the degradation of tetracycline using UV-A light, J. Ind. Eng. Chem., 69, 141-152 (2019).   DOI
74 X. Zhu, B. Cheng, J. Yu, and W. Ho, Halogen poisoning effect of Pt-$TiO_{2}$ for formaldehyde catalytic oxidation performance at room temperature, Appl. Surf. Sci., 364, 808-814 (2016).   DOI
75 Y. Zhang, Z. R. Tang, X. Fu, and Y. J. Xu, $TiO_{2}$-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is $TiO_{2}$-graphene truly different from other $TiO_{2}$-carbon composite materials?, ACS Nano, 4, 7303-7314 (2010).   DOI
76 B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing, and J. Zhang, Facile synthesis of the $Ti^{3+}$ self-doped $TiO_{2}$-graphene nanosheet composites with enhanced photocatalysis, Sci. Rep., 5, 8591 (2015).   DOI
77 M. Xing, J. Zhang, F. Chen, and B. Tian, An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities, Chem. Commun., 47, 4947-4949 (2011).   DOI
78 L. L. Tan, S. P. Chai, and A. R. Mohamed, Synthesis and applications of graphene-based $TiO_{2}$ photocatalysts, ChemSusChem, 5, 1868-1882 (2012).   DOI
79 H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4, 380-386 (2010).   DOI
80 S. Banerjee, S. C. Pillai, P. Falaras, K. E. O'Shea, J. A. Byrne, and D. D. Dionysiou, New insights into the mechanism of visible light photocatalysis, J. Phys. Chem. Lett., 5, 2543-2554 (2014).   DOI
81 S. Teixeira, H. Mora, L.-M. Blasse, P. M. Martins, S. A. C. Carabineiro, S. Lanceros-Mendez, K. Kuhn, and G. Cuniberti, Photocatalytic degradation of recalcitrant micropollutants by reusable $Fe_{3}O_{4}/SiO_{2}/TiO_{2}$ particles, J. Photochem. Photobiol. A, 345, 27-35 (2017).   DOI
82 T. An, H. Yang, G. Li, W. Song, W. J. Cooper, and X. Nie, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal. B, 94, 288-294 (2010).   DOI
83 A. Jbeli, Z. Hamden, S. Bouattour, A. M. Ferraria, D. S. Conceicao, L. F. V. Ferreira, M. M. Chehimi, A. M. B. do Rego, M. R. Vilar, and S. Boufi, Chitosan-Ag-$TiO_{2}$ films: An effective photocatalyst under visible light, Carbohydr. Polym., 199, 31-40 (2018).   DOI
84 L.-L. Qu, N. Wang, G. Zhu, T. P. Yadav, X. Shuai, D. Bao, G. Yang, D. Li, and H. Li, Facile fabrication of ternary $TiO_{2}$-gold nanoparticle-graphene oxide nanocomposites for recyclable surface enhanced Raman scattering, Talanta, 186, 265-271 (2018).   DOI
85 Z. Hamden, S. Bouattour, A. M. Ferraria, D. P. Ferreira, L. F. V. Ferreira, and A. M. B. do Rego, S. Boufi, In situ generation of $TiO_{2}$ nanoparticles using chitosan as a template and their photocatalytic activity. J. Photochem. Photobiol. A, 321, 211-222 (2016).   DOI
86 U. Nwankwo, R. Bucher, A. B. C. Ekwealor, S. Khamlich, M. Maaza, and F. I. Ezema, Synthesis and characterizations of rutile- $TiO_{2}$ nanoparticles derived from chitin for potential photocatalytic applications, Vacuum, 161, 49-54 (2019).   DOI
87 M. Horie, H. Kato, K. Fujita, S. Endoh, and H. Iwahashi, In vitro evaluation of cellular response induced by manufactured nanoparticles, Chem. Res. Toxicol., 25, 605-619 (2012).   DOI
88 U. Arellano, M. Asomoza, and F. Ramirez, Antimicrobial activity of Fe-$TiO_{2}$ thin film photocatalysts, J. Photochem. Photobiol., 222, 159-165 (2011).   DOI
89 US EPA, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen, EPA/600/R-09/057F (2010).
90 J. Blanco-Galvez, P. Fernandez-Ibanez, and S. Malato-Rodriguez, Solar photocatalytic detoxification and disinfection of water: Recent overview, J. Sol. Energy Eng., 129, 4-15 (2006).
91 A. Mishra, A. Mehta, and S. Basu, Clay supported $TiO_{2}$ nanoparticles for photocatalytic degradation of environmental pollutants: A review, J. Environ. Chem. Eng., 6, 6088-6107 (2018).   DOI
92 M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69-96 (1995).   DOI
93 M. A. Fox and M. T. Dulay, Heterogeneous photocatalysis, Chem. Rev., 93, 341-357 (1993).   DOI
94 A. Fujishima, T. N. Rao, and D. A. J. Tryk, Titanium dioxide photocatalysis, Photochem. Photobiol. C, 1, 1-21 (2000).   DOI
95 R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li, J. Yang, D. W. Bahnemann, and J. H. Pan, Charge carrier trapping, recombination and transfer during $TiO_{2}$ photocatalysis: An overview, Catal. Today, DOI: 10.1016/j.cattod.2018.10.053 (2018).
96 N. R. Khalid, A. Majid, M. B. Tahir, N. A. Niaz, and S. Khalid, Carbonaceous-$TiO_{2}$ nanomaterials for photocatalytic degradation of pollutants: A review, Ceram. Int., 43, 14552-14571 (2017).   DOI
97 Y. Wei, J. Zhu, Y. Gan, and G. Cheng, Titanium glycolate-derived $TiO_{2}$ nanomaterials: Synthesis and applications, Adv. Powder Technol., 29, 2289-2311 (2018).   DOI
98 R. Singh and S. Dutta, A review on $H_{2}$ production through photocatalytic reactions using $TiO_{2}$/$TiO_{2}$-assisted catalysts, Fuel, 220, 607-620 (2018).   DOI
99 M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69-96 (1995).   DOI
100 A. Sudhaik, P. Raizada, P. Shandilya, D.-Y. Jeong, J.-H. Lim, and P. Singh, Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants, J. Ind. Eng. Chem., 67, 28-51 (2018).   DOI
101 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Dome, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8, 76-80 (2008).   DOI
102 J. Wen, J. Xie, X. Chen, and X. Li, A review on $g-C_{3}N_{4}-based$ photocatalysts, Appl. Surf. Sci., 391, 72-123 (2017).   DOI
103 H. Zong, T. Zhao, G. Zhou, R. Qian, and J. H. Pan, Revisiting structural and photocatalytic properties of $g-C_{3}N_{4}$/$TiO_{2}$: Is surface modification of $TiO_{2}$ by calcination with urea an effective route to "solar" photocatalyst? Catal. Today, DOI: 10.1016/j.cattod.2018.12.015 (2018).
104 A.-W. Xu, Y. Gao, and H.-Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped $TiO_{2}$ nanoparticles, J. Catal., 207, 151-157 (2002).   DOI
105 F. Zhou, C. Yan, Q. Sun, and S. Komarneni, $TiO_{2}$/Sepiolite nanocomposites doped with rare earth ions: Preparation, characterization and visible light photocatalytic activity, Microporous Mesoporous Mater., 274, 25-32 (2019).   DOI
106 C. Karunakaran and P. Gomathisankar, Solvothermal synthesis of $CeO_{2}$-$TiO_{2}$ nanocomposite for visible light photocatalytic detoxification of cyanide, ACS Sustain. Chem. Eng., 1, 1555-1563 (2013).   DOI
107 F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, Self-doped $Ti^{3+}$ enhanced photocatalyst for hydrogen production under visible light, J. Am. Chem. Soc., 132, 11856-11857 (2010).   DOI
108 World Health Organization, Guidelines for Drinking-Water Quality, 4th Ed. (2011).
109 J. H. Melian, J. D. Rodriguez, A. V. Suarez, E. T. Rendon, C. V. Do Campo, J. Arana, and J. P. Pena, The photocatalytic disinfection of urban waste waters, Chemosphere, 41, 323-327 (2000).   DOI
110 A. Rincon and C. Pulgarin, Bactericidal action of illuminated $TiO_{2}$ on pure Escherichia coli and natural bacterial consortia: Post-irradiation events in the dark and assessment of the effective disinfection time, Appl. Catal. B, 49, 99-112 (2004).   DOI
111 U. Arellano, M. Asomoza, and F. Ramirez, Antimicrobial activity of Fe-$TiO_{2}$ thin film photocatalysts, J. Photochem. Photobiol., 222, 159-165 (2011).   DOI
112 A. F. Howard, B. D. Iram, V. Sajnu, and S. Alex, Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol., 90, 1847-1868 (2011).   DOI
113 J. S. Ogorevc, E. Tratar-Pirc, L. Matoh, and B. Peter, Antibacterial and photodegradative properties of metal doped $TiO_{2}$ thin films under visible light, Acta Chim. Slov., 59, 264-272 (2012).
114 L. Guo, C. Shan, J. Liang, J. Ni, and M. Tong, Bacterial mechanisms of Au@TNBs under visible light irradiation, Colloids Surf. B, 128, 211-218 (2015).   DOI
115 J. Zhang, X. Suo, J. Zhang, B. Han, P. Li, Y. Xue, and H. Shi, One-pot synthesis of Au/$TiO_{2}$ heteronanostructure composites with SPR effect and its antibacterial activity, Mater. Lett., 162, 235-237 (2016).   DOI
116 R. Dillert, U. Siemon, and D. Bahnemann, Photocatalytic disinfection of municipal wastewater, Chem. Eng. Technol., 21, 356-358 (1998).   DOI
117 A. Achilleos, E. Hapeshi, N. P. Xekoukoulotakis, and D. Fatta-Kassinos, UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by $TiO_{2}$, Sep. Sci. Technol., 45, 1564-1570 (2010).   DOI
118 A. Millis and S. J. Le Hunte, An overview of semiconductor photocatalysis, Photochem. Photobiol. A, 108, 1-35 (1997).   DOI
119 A. Hassani, A. Khataee, and S. Karaca, Photocatalytic degradation of ciprofloxacin by synthesized $TiO_{2}$ nanoparticles on montmorillonite: effect of operation parameters and artificial neural network modeling, J. Mol. Catal. A, 409, 149-161 (2015).   DOI
120 T. An, H. Yang, W. Song, G. Li, H. Luo, and W. J. Cooper, Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using $TiO_{2}$ heterogeneous catalysis, J. Phys. Chem. A, 114, 2569-2575 (2010).   DOI
121 K. Kang, M. Jang, M. Cui, P. Qui, B. Park, S. A. Snyder, and J. Khim, Preparation and characterization of magnetic-core titanium dioxide: Implications for photocatalytic removal of ibuprofen, J. Mol. Catal. A, 390, 178-186 (2014).   DOI
122 J. Choi, H. Lee, Y. Choi, S. Kim, S. Lee, S. Lee, W. Choi, and J. Lee, Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: Effects of wastewater effluent matrix and catalyst modifications, Appl. Catal. B, 147, 8-16 (2014).   DOI
123 Y. Zhang, D. Gu, L. Zhu, and B. Wang, Highly ordered $Fe^{3+}/TiO_{2}$ nanotube arrays for efficient photocatalytic degradation of nitrobenzene, Appl. Surf. Sci., 420, 896-904 (2017).   DOI
124 Q. Zhen, L. Gao, C. Sun, H. Gong, P. Hu, S. Song, and R. Li, Honeycomb-like $TiO_{2}$@GO nanocomposites for the photodegradation of oxytetracycline, Mater. Lett., 228, 318-321 (2018).   DOI
125 S. M. H. AL-Jawada, A. A. Taha, and M. M. Salim, Synthesis and characterization of pure and Fe doped $TiO_{2}$ thin films for antimicrobial activity, Optik, 142, 42-53 (2017).   DOI
126 G. Wang, H. Feng, A. Gao, Q. Hao, W. Jin, X. Peng, W. Li, G. Wu, and P. K. Chu, Extracellular electron transfer from aerobic bacteria to Au-loaded $TiO_{2}$ semiconductor without light: A new bacteria-killing mechanism other than localized surface Plasmon resonance or microbial fuel cells, ACS Appl. Mater. Interfaces, 8, 24509-24516 (2016).   DOI
127 G. Wang, H. Feng, W. Jin, A. Gao, X. Peng, W. Li, H. Wu, Z. Li, and P. K. Chu, Long term antibaterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects, Appl. Surf. Sci., 414, 230-237 (2017).   DOI
128 I. Levchuk, M. Kralova, J. J. Rueda-Marquez, J. Moreno-Andres, S. Gutierrez-Alfaro, P. Dzik, S. Parola, M. Sillanpaa, R. Vahala, and M. A. Manzano, Antimicrobial activity of printed composite $TiO_{2}$/$SiO_{2}$ and $TiO_{2}$/$SiO_{2}$/Au thin films under UVA-LED and natural solar radiation, Appl. Catal. B, 239, 609-618 (2018).   DOI
129 Japanese Standards Association, JIS Z 2801: Antibacterial Products- Test for Antibacterial Activity and Efficacy (2010).
130 I. Yamada, K. Nomura, H. Iwahashi, and M. Horie, The effect of titanium dioxide ($TiO_{2}$) nano-objects, and their aggregates and agglomerates greater than 100 nm (NOAA) on microbes under UV irradiation, Chemosphere, 143, 123-127 (2016).   DOI
131 A. Moriyama, I. Yamada, J. Takahashi, and H. Iwahashi, Oxidative stress caused by $TiO_{2}$ nanoparticles under UV irradiation is due to UV irradiation not through nanoparticles, Chem. Biol. Interact., 294, 144-150 (2018).   DOI
132 I. Justicia, P. Ordejon, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Battiston, R. Gerbasi, and A. Figueras, Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis, Adv. Mater., 14, 1399-1402 (2002).   DOI
133 Y. Lara-Lopez, G. Garcia-Rosales, and J. Jimenez-Becerril, Synthesis and characterization of carbon-$TiO_{2}$-$CeO_{2}$ composites and their applications in phenol degradation, J. Rare Earth, 35, 551-557 (2017).   DOI
134 Y. Zhou, C. Chen, N. Wang, Y. Li, and H. Ding, Stable $Ti^{3+}$ self-doped anatase-rutile mixed $TiO_{2}$ with enhanced visible light utilization and durability, J. Phys. Chem. C, 120, 6116-6124 (2016).   DOI
135 K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, and J. Lu, Synergetic effect of $Ti^{3+}$ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of $TiO_{2}$/$g-C_{3}N_{4}$ heterojunctions, ACS Appl. Mater. Interfaces, 9, 11577-11586 (2017).   DOI
136 X. Yu, X. Fan, L. An, Z. Li, and J. Liu, Facile synthesis of $Ti^{3+}$-$TiO_{2}$ mesocrystals for efficient visible-light photocatalysis, J. Phys. Chem. Solids, 119, 94-99 (2018).   DOI
137 F. Zhou, C. Yan, H. Wang, S. Zhou, and S. Komarneni, Fabrication and characterization of $TiO_{2}$/sepiolite nanocomposites doped with rare earth ions, Mater. Lett., 228, 100-103 (2018).   DOI
138 X. Shao, F. Pan, L. Zheng, R. Zhang, and W. Zhang, Photocatalytic applications of $TiO_{2}$-C hybrid aerogels and their photocatalytic properties, New Carbon Mater., 33, 116-124 (2018).   DOI
139 K. Zhou, Y. Zhu, X. Yang, X. Jiang, and C. Li, Preparation of graphene-$TiO_{2}$ composites with enhanced photocatalytic activity, New J. Chem., 35, 353-359 (2011).   DOI
140 Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, Photoreactive $TiO_{2}$/carbon nanotube composites: Synthesis and reactivity, Environ. Sci. Technol., 42, 4952-4957 (2008).   DOI
141 R. M. Mohamed, A. A. Ismail, M. W. Kadi, and D. W. Bahnemann, A comparative study on mesoporous and commercial $TiO_{2}$ photocatalysts for photodegradation of organic pollutants, J. Photochem. Photobiol. A, 367, 66-73 (2018).   DOI
142 A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, and S.-M. Lee, Au-nanoparticle/nanopillars $TiO_{2}$ meso-porous thin films in the degradation of tetracycline using UV-A light, J. Ind. Eng. Chem., 69, 141-152 (2019).   DOI
143 S. Feizpoor, A. Habibi-Yangjeh, and K. Yubuta, Integration of carbon dots and polyaniline with $TiO_{2}$ nanoparticles: Substantially enhanced photocatalytic activity to removal various pollutants under visible light, J. Photochem. Photobiol. A, 367, 94-104 (2018).   DOI
144 L. Yang, L. Xu, X. Bai, and P. Jin, Enhanced visible-light activation of persulfate by $Ti^{3+}$ self-doped $TiO_{2}$/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water, J. Hazard. Mater., 365, 107-117 (2019).   DOI
145 S. A. Yuan, W. H. Chen, and S. S. Hu, Fabrication of $TiO_{2}$ nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine, Mater. Sci. Eng. C, 25, 479-485 (2005).   DOI
146 A. Salvador, M. C. Pascual-Marti, J. R. Adell, A. Requeni, and J. G. J. March, Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams, Pharm. Biomed. Anal., 22, 301-306 (2000).   DOI
147 R. Zallen and M. P. Moret, The optical absorption edge of brookite $TiO_{2}$, Solid State Commun., 137, 154-157 (2006).   DOI
148 J. H. Braun, A. Baidins, and R. E. Marganski, $TiO_{2}$ pigment technology: A review, Prog. Org. Coat., 20, 105-138 (1992).   DOI
149 M. L. de Souza and P. Corio, Effect of silver nanoparticles on $TiO_{2}$-mediated photodegradation of Alizarin Red S, Appl. Catal. B, 136-137, 325-333 (2013).   DOI
150 M. Hdidar, S. Chouikhi, A. Fattoum, M. Arous a, and A. Kallel, Influence of $TiO_{2}$ rutile doping on the thermal and dielectric properties of nanocomposite films based PVA, J. Alloys Compd., 750, 375-383 (2018).   DOI
151 B. J. O'Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, and G. W. Huber, Catalyst design with atomic layer deposition, ACS Catal., 5, 1804-1825 (2015).   DOI
152 A. Giampiccolo, D. M. Tobaldi, S. G. Leonardi, B. J. Murdoch, M. P. Seabra, M. P. Ansell, G. Neric, and R. J. Ball, Sol gel graphene/$TiO_{2}$ nanoparticles for the photocatalytic-assisted sensing and abatement of $NO_{2}$, Appl. Catal. B, 243, 183-194 (2019).   DOI
153 H. Van Bui, F. Grillo, and J. R. van Ommen, Atomic and molecular layer deposition: off the beaten track, Chem. Commun., 53, 45-71 (2017).   DOI
154 J. Lu, J. W. Elam, and P. C. Stair, Atomic layer deposition - Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis, Surf. Sci. Rep., 71, 410-472 (2016).   DOI
155 Z. Gao and Y. Qin, Design and properties of confined nanocatalysts by atomic layer deposition, Acc. Chem. Res., 50, 2309-2316 (2017).   DOI
156 S. D. Elliott, G. Dey, Y. Maimaiti, H. Ablat, E. A. Filatova, and G. N. Fomengia, Modeling mechanism and growth reactions for new nanofabrication processes by atomic layer deposition, Adv. Mater., 28, 5367-5380 (2016).   DOI
157 G. Sanzone, M. Zimbone, G. Cacciato, F. Ruffino, R. Carles, V. Privitera, and M. G. Grimaldi, $Ag/TiO_{2}$ nanocomposite for visible light-driven photocatalysis, Superlattices Microstruct., 123, 394-402 (2018).   DOI
158 R. Chandrasekar, L. Zhang, J. Y. Howe, N. E. Hedin, Y. Zhang, and H. Fong, Fabrication and characterization of electrospun titania nanofibers, J. Mater Sci., 44, 1198-1205 (2009).   DOI
159 M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69-96 (1995).   DOI
160 J. B. Zhong, Y. Lu, W. D. Jiang, Q. M. Meng, X. Y. He, J. Z. Li, and Y. Q. Chen, Characterization and photocatalytic property of Pd/$TiO_{2}$ with the oxidation of gaseous benzene, J. Hazard. Mater., 168, 1632-1635 (2009).   DOI
161 K. Hashimoto, H. Irie, and A. Fujishima, $TiO_{2}$ photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys., 44, 8269-8285 (2005).   DOI
162 M. L. de Souza and P. Corio, Effect of silver nanoparticles on $TiO_{2}$-mediated photodegradation of Alizarin Red S, Appl. Catal. B, 136-137, 325-333 (2013).   DOI
163 J. Zhao, C. Chen, and W. Ma, Photocatalytic degradation of organic pollutants under visible light irradiation, Top. Catal., 35, 269-278 (2005).   DOI
164 D. Reyes-Coronado, G. R. Gattorno, M. E. E. Pesqueira, C. Cab, R. de Coss, and G. Oskam, Phase-pure $TiO_{2}$ nanoparticles: Anatase, brookite and rutile, Nanotechnol., 19, 145605 (2018).   DOI
165 E. Keidel, The fading of aniline dyes in the presence of titanium white, Farben der Zeit, 34, 1242-1243 (1929).
166 C. F. Doodeve and J. A. Kitchener, The mechanism of photosensitisation by solids, Trans Faraday Soc., 34, 902-908 (1938).   DOI
167 A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972).   DOI
168 F. Gao, J. Jiang, L. Dua, X. Liu, and Y. Ding, Stable and highly efficient Cu/$TiO_{2}$ nanocomposite photocatalyst prepared through atomic layer deposition, Appl. Catal. A, 568, 168-175 (2018).   DOI
169 K. Jia, J.-L. Bijeon, P.-M. Adam, and R. E. Ionescu, Large scale fabrication of gold nano-structured substrates via high temperature annealing and their direct use for the LSPR detection of atrazine, Plasmonics, 8, 143-151 (2012).   DOI
170 D. Mortazavi, A. Z. Kouzani, and K. C. Vernon, A resonance tunable and durable LSPR nano-Particle sensor: $Al_{2}O_{3}$ capped silver nano-disks, Prog. Electromagn. Res., 130, 429-446 (2012).   DOI
171 A. Fujishima and D. A. Tryk, Photoelectrochemical conversions. In: K. Honda (ed.), Functionality of Molecular Systems. 2. From Molecular Systems to Molecular Devices, 196, Springer, Tokyo, Japan (1999).
172 L. M. Peter, Photoelectrochemical kinetics at semiconductor electrodes. In: R. G. Compton and G. Hancock (eds.), Applications of Kinetic Modeling, 223, Elsevier, Amsterdam, Netherlands (1999).
173 E. Kazuma and T. Tatsuma, Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips, Nanoscale, 6, 2397-2405 (2014).   DOI
174 B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, LSPR-based nano biosensors, Nano Today, 4, 244-251 (2009).   DOI
175 A. J. Haes and R. P. Van Duyne, A unified view of propagating and localized surfaceplasmon resonance biosensors, Anal. Bioanal. Chem., 379, 920-930 (2004).   DOI
176 C. Huang, K. Bonroy, G. Reekmans, W. Laureyn, K. Verhaegen, I. De Vlaminck, L. Lagae, and G. Borghs, Localized surface plasmon resonance biosensor integrated with microfluidic chip, Biomed. Microdevices, 11, 893-901 (2009).   DOI
177 M. Manzano, P. Vizzini, K. Jia, P.-M. Adam, and R. E. Ionescu, Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine, Sens. Actuators B, 223, 295-300 (2016).   DOI
178 M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, Trends and challenges of refractometric nanoplasmonic biosensors: A review, Anal. Chim. Acta, 806, 55-73 (2014).   DOI
179 S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor, J. Opt. Soc. Am. A, 29, 994-1002 (2012).   DOI
180 L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. Van Duyne, Advances in localizedsurface plasmon resonance spectroscopy biosensing, Nanomedicine, 6, 1447-1462 (2011).   DOI
181 K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 58, 267-297 (2007).   DOI
182 M. Lazzeri, A. Vittadini, and A. Selloni, Structure and energetics of stoichiometric $TiO_{2}$ anatase surfaces, Phys. Rev. B, 63, 155409 (2001).   DOI
183 A. Tiwari, A. Shukla, S. S. Choi, and S. M. Lee, Surface modified nanostructured-$TiO_{2}$ thin films for removal of congo red, Korean J. Chem. Eng., 35, 2133-2137 (2018).   DOI
184 A. L. Linsebigler, G. Lu, and J. T. Yates Jr., Photocatalysis on $TiO_{2}$ surfaces: Principles, mechanisms, and selected results, Chem. Rev., 95, 735-758 (1995).   DOI
185 R. D. Shannon and J. A. Pask, Kinetics of the anatase-rutile transformation, J. Am. Ceram. Soc., 48, 391-398 (1965).   DOI
186 I. Doron-Mor, H. Cohen, Z. Barkay, A. Shanzer, A. Vaskevich, and I. Rubinstein, Sensitivity of transmission surface plasmon resonance (T-SPR) spectroscopy: Self-assembled multilayers on evaporated gold island films, Chemistry, 11, 5555-5562 (2005).   DOI
187 S. S. Acimovic, M. A. Ortega, V. Sanz, J. Berthelot, J. L. Garcia-Cordero, J. Renger, S. J. Maerkl, M. P. Kreuzer, and R. Quidant, LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum, Nano Lett., 14, 2636-2641 (2014).   DOI
188 J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater., 7, 442-453 (2008).   DOI
189 A. Kalyuzhny, M. A. Vaskevich, and I. Schneeweiss, Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultra thin gold island films, Chemistry, 8, 3849-3857 (2002).   DOI
190 N. Rahimi, R. A. Pax, and E. M. Gray, Review of functional titanium oxides. I: $TiO_{2}$ and its modifications, Prog. Solid State Chem., 44, 86-105 (2016).   DOI
191 X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, and F. Pedraza, Local order in titania polymorphs, Int. J. Hydrogen Energy, 26, 1279-1287 (2001).   DOI
192 A. D. Paola, M. Bellardita, and L. Palmisano, Brookite, the least known $TiO_{2}$ photocatalyst, Catalysts, 3, 36-73 (2013).   DOI
193 T. Wintgens, F. Salehi, R. Hochstrat, and T. Melin, Emerging contaminants and treatment options in water recycling for indirect potable use, Water Sci. Technol., 163, 99-107 (2008).
194 R. E. Smalley, Future global energy prosperity: The terawatt challenge, MRS Bull., 30, 412-417 (2005).   DOI
195 S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today, 147, 1-59 (2009).   DOI
196 A. Sclafani and J. M. Hermann, Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media, J. Photochem. Photobiol. A, 113, 181-188 (1998).   DOI
197 M. Lahav, A. Vaskevich, and I. Rubinstein, Biological sensing using transmissionsurface plasmon resonance spectroscopy, Langmuir, 20, 7365-7367 (2004).   DOI
198 G. Cappi, F. M. Spiga, Y. Moncada, A. Ferretti, M. Beyeler, M. Bianchessi, L. Decosterd, T. Buclina, and C. Guiducci, Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance, Anal. Chem., 87, 5278-5285 (2015).   DOI
199 L. G. Devi and K. M. Reddy, Enhanced photocatalytic activity of silver metallized $TiO_{2}$ particles in the degradation of an azo dye methyl orange: Characterization and activity at different pH values, Appl. Surf. Sci., 256, 3116-3121 (2010).   DOI