Browse > Article
http://dx.doi.org/10.14478/ace.2018.1125

Effect of Oxyfluorination on Electroless Ni Deposition of Carbon Nanotubes (CNTs) and Their EMI Shielding Properties  

Choi, Ye Ji (Department of Chemical Eng. And Applied Chemistry, Chungnam National University)
Lee, Kyeong Min (Department of Chemical Eng. And Applied Chemistry, Chungnam National University)
Yun, Kug Jin (Department of Chemical Eng. And Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Chemical Eng. And Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.2, 2019 , pp. 212-218 More about this Journal
Abstract
To investigate the effect of the oxyfluorination of carbon nanotubes (OF-CNTs) on electroless Ni deposition and electromagnetic interference shielding efficiency (EMI SE), CNTs were treated with a mixture of oxygen and fluorine gases and sequentially deposited with nickel. These samples were then manufactured into thin films on a polyimide film to evaluate their EMI SE. The surface chemical property of OF-CNTs was investigated by X-ray photoelectron spectroscopy. From the results of thermogravimetric and scanning electron microscopic analyses, it was found that both the amount of deposited Ni and the surface morphology changed depending on oxyfluorination. Moreover, the Ni-deposited CNTs pretreated with $O_2:F_2=1:9vol%$ exhibited the maximum EMI SE as approximately 19.4 dB at 1 GHz. These results were attributed to the formation of oxygen and fluorine functional groups on the surface of CNTs due to the oxyfluorination, and the functional groups enabled to deposit a suitable amount of Ni and improve the dispersion in the deposited solution.
Keywords
Carbon nanotubes; Surface treatments; Electroless Ni deposition; EMI shielding efficiency;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 R. R. Thomas, K. G. Lloyd, K. M. Stika, L. E. Stephans, G. S. Magallanes, V. L. Dimonie, E. D. Sudol, and M. S. El-Aasser, Low free energy surfaces using blends of fluorinated acrylic copolymer and hydrocarbon acrylic copolymer latexes, Macromolecules, 33, 8828-8841 (2000).   DOI
2 W. Lu, V. S. Donepudi, J. Prakash, J. Liu, and K. Amine, Electrochemical and thermal behavior of copper coated type MAG-20 natural graphite, Electrochim. Acta, 47, 1601-1606 (2002).   DOI
3 F. Tian, H. P. Li, N. Q. Zhao, and C. N. He, Catalyst effects of fabrication of carbon nanotubes synthesized by chemical vapor deposition, Mater. Chem. Phys., 115, 493-495 (2009).   DOI
4 Y. Y. Kim, J. Yun, H. I. Kim, and Y. S. Lee, Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes, J. Ind. Eng. Chem., 18, 392-398 (2012).   DOI
5 Y. P. Sun, K. Fu, Y. Lin, and W. Huqng, Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res., 35, 1096-1104 (2002).   DOI
6 J. S. Im, J. G. Kim, S. H. Lee, and Y. S. Lee, Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference, Colloids Surf. A, 364, 151-157 (2010).   DOI
7 K. Ji, H. Zhao, J. Zhang, J. Chen, and Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs, Appl. Surf. Sci., 311, 351-356 (2014).   DOI
8 H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, and Q. Fu, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Prog. Polym. Sci., 37, 627-655 (2014).
9 D. D. L. Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon, 39, 279-285 (2001).   DOI
10 S. K. M. Jonsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. Denier van der Gon, W. R. Salaneck, and M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films, Synth. Met., 139, 1-10 (2003).   DOI
11 N. Joseph, C. Janardhanan, and M. T. Sebastian, Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites, Compos. Sci. Technol., 101, 139-144 (2014).   DOI
12 S. A. Schelkunoff, Electromagnetic Waves, Princeton, New Jersey, USA (1943).
13 R. B. Schulz, V. C. Plantz, and D. R. Brush, Shielding theory and practice, IEEE Trans. Electromagn. Compat., 30, 187-201 (1988).   DOI
14 J. H. Lin, Z. I. Lin, Y. J. Pan, C. K. Chen, C. L. Huang, C. H. Huang, and C. W. Lou, Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: Synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes, Macromol. Mater. Eng., 301, 199-211 (2016).   DOI
15 D. Xing, L. Lu, W. Tang, Y. Xie, and Y. Tang, An ultra-thin multilayer carbon fiber reinforced composite for absorption-dominated EMI shielding application, Mater. Lett., 207, 165-168 (2017).   DOI
16 Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding, Adv. Mater., 25, 1296-1300 (2013).   DOI
17 Y. Wang, Y. Wang, J. J. Chen, H. Guo, K. Liang, K. Marcus, Q. L. Peng, J. Zhang, and Z. S. Feng, A facile process combined with inkjet printing, surface modification and electroless deposition to fabricate adhesion-enhanced copper patterns on flexible polymer substrates for functional flexible electronics, Electrochim. Acta, 218, 24-31 (2016).   DOI
18 S. Kuester, G. M. O. Barra, J. C. Ferreira Jr., B. G. Soares, and N. R. Demarquette, Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ranbutylene-b-styrene) and carbon nanotubes, Eur. Polym. J., 77, 43-53 (2016).   DOI
19 D. Y. Kim, K. J. Yun, and Y. S. Lee, Electromagnetic interference shielding characteristics of electroless nickel plated carbon nanotubes, Appl. Chem. Eng., 25, 268-273 (2014).   DOI
20 L. Bonin, N. Bains, V. Vitry, and A. J. Cobley, less deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings, Ultrasonics, 77, 61-68 (2017).   DOI
21 H. Jo, K. H. Kim, M. J. Jung, J. H. Park, and Y. S. Lee, Fluorination effect of activated carbons on performance of asymmetric capacitive deionization, Appl. Surf. Sci., 409, 117-123 (2017).   DOI
22 Y. J. Yim, K. Y. Rhee, and S. J. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites, Composites B, 98, 120-125 (2016).   DOI
23 J. Cao, Z. Wu, J. Yang, S. Li, H. Tang, and G. Xie, Site-selective electroless plating of copper on a poly (ethylene terephthalate) surface modified with a self-assembled monolayer, Colloids Surf. A, 415, 347-379 (2012).
24 Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002).   DOI
25 M. J. Jung, H. R. Yu, and Y. S. Lee, Preparation of fluorinated graphite with high fluorinecontent and high crystallinity, Carbon Lett., 26, 112-116 (2018).   DOI
26 H. R. Yu, J. G. Kim, J. S. Im, T. S. Bae, and Y. S. Lee, Effects of oxyfluorination on a multi-walled carbon nanotube electrode for a high-performance glucose sensor, J. Ind. Eng. Chem., 18, 674-679 (2012).   DOI
27 K. H. Kim, J. I. Han, D. H. Kang, and Y. S. Lee, Improved heatspreading properties of fluorinated graphite/epoxy film, Carbon Lett., 28, 96-99 (2018).   DOI
28 A. M. Nicolson and G. F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas., 19, 377-382 (1970).   DOI
29 M. J. Jung, E. Jeong, J. W. Lim, S. I. Lee, and Y. S. Lee, Physicochemical surface modification of activated carbon by oxyfluorination and its electrochemical characterization, Colloids. Surf. A, 389, 274-280 (2011).   DOI
30 K. M. Lee, S. E. Lee, and Y. S. Lee, Improved mechanical and electromagnetic interference shielding properties of epoxy composites through the introduction of oxyfluorinated multiwalled carbon nanotubes, J. Ind. Eng. Chem., 56, 435-442 (2017).   DOI
31 X. Zhang and C. Li, The effect of loading rate on deformation of TA1 titanium alloy bars subjected to electromagnetic heading, Mater. Sci. Eng. A, 679, 511-519 (2017).   DOI
32 C. Xia, H. Ren, S. Q. Shi, H. Zhang, J. Cheng, L. Cai, K. Chen, and H. S. Tan, Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering, Appl. Surf. Sci., 362, 335-340 (2016).   DOI
33 J. H. Kim, D. Y. Kim, and Y. S. Lee, The effects of carbon coating onto graphite filler on the structure and properties of carbon foams, Carbon Lett., 21, 111-115 (2017).   DOI
34 K. M. Lee, M. J. Kim, H. Jo, S. Y. Yeo, and Y. S. Lee, The electrical and heating properties of copper-incorporated graphite fibers fabricated using different ultrasonication techniques, Carbon Lett., 24, 111-114 (2017).   DOI
35 M. S. Park, S. Lee, and Y. S. Lee, Mechanical properties of epoxy composites reinforced with ammonia-treated graphene oxides, Carbon Lett., 21, 1-7 (2017).   DOI
36 W. K. Choi, B. J. Kim, and S. J. Park, Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers, Carbon Lett., 14, 243-246 (2013).   DOI
37 A. Aliyu, A. S. Abdulkareem, A. S. Kovo, O. K. Abubakre, J. O. Tijani, and I. Kariim, Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin, Carbon Lett., 21, 33-50 (2017).   DOI
38 J. S. Im, J. G. Kim, and Y. S. Lee, Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion, Carbon, 47, 2640-2647 (2009).   DOI
39 B. J. Kim, K. M. Bae, Y. S. Lee, K. H. An, and S. J. Park, EMI shielding behaviors of Ni-coated MWCNTs-filled epoxy matrix nanocomposites, Surf. Coat. Technol., 242, 125-131 (2014).   DOI
40 Y. J. Yim, K. Y. Rhee, and S. J. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites, Composites A, 98, 120-125 (2016).   DOI
41 A. E. Fetohi, R. M. Abdel Hameed, and K. M. El-Khatib, Development of electroless Ni-P modified aluminum substrates in a simulated fuel cell environment, J. Ind. Eng. Chem., 30, 239-248 (2015).   DOI