Browse > Article
http://dx.doi.org/10.14478/ace.2018.1104

Low-humidifying Nafion/TiO2 Composite Membrane Prepared via in-situ Sol-gel Process for Proton Exchange Membrane Fuel Cell  

Choi, Beomseok (Division of Chemical Engineering, College of Engineering, Konkuk University)
Ko, Youngdon (Division of Chemical Engineering, College of Engineering, Konkuk University)
Kim, Whajung (Division of Chemical Engineering, College of Engineering, Konkuk University)
Publication Information
Applied Chemistry for Engineering / v.30, no.1, 2019 , pp. 74-80 More about this Journal
Abstract
$Nafion/TiO_2$ composite membranes were prepared via an in-situ sol-gel process with different immersing periods from 1 day to 7 days for the low humidifying proton exchange membrane fuel cell. As the immersing time increased, the $TiO_2$ content within the Nafion membrane increased. The contact angle decreased with the increased $TiO_2$ content in the composite membrane due to the increased hydrophilicity. The water uptake and proton conductivity reached to the highest level for 4 day immersing period, then decreased as the immersing period increased. A 7 days of immersing time was shown to be too long because too much $TiO_2$ aggregates were formed on the membrane surface as well as interior of the membrane, interfering the proton transfer from anode to cathode. Cell performance results were in good agreement with those of the water uptake and proton conductivity; current densities under a relative humidity (RH) of 40% were 0.54, 0.6, $0.63A/cm^2$ and $0.49A/cm^2$ for the immersing time of 1, 3, 4 and 7 days, respectively at a 0.6 V. The composite membrane prepared via the in-situ sol-gel process exhibited the enhancement in the cell performance under of RH 40% by a maximum of about 66% compared to those of using the recasting composite membrane and Nafion 115.
Keywords
In-situ sol-gel; $TiO_2$ nanoparticle; Immersing time; Low relative humidity; Cell performance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Devrim, S. Erkan, N. Bac, and I. Eroglu., Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique, Int. J. Hydrogen Energy, 37, 16748-16758 (2012).   DOI
2 B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies. Nature, 414, 345-352 (2001).   DOI
3 L. Carrette, K. A. Friedrich, and U. Stimming, Fuel cells: Principles, types, fuels, and applications, ChemPhysChem, 1, 162-193 (2000).   DOI
4 C. del Rio, E. Morales, and P. G. Escribano, Nafion/sPOSS hybrid membranes for PEMFC. Single cell performance and electrochemical characterization at different humidity conditions, Int. J. Hydrogen Energy, 39, 5326-5337 (2014).   DOI
5 F. Barbir and T. Gomez, Efficiency and economics of proton exchange membrane (PEM) fuel cells, Int. J. Hydrogen Energy, 21, 891-901 (1996).   DOI
6 M. Amjadi, S. Rowshanzamir, S. J. Peighambardoust, M. G. Hosseini, and M. H. Eikani, Investigation of physical properties and cell performance of Nafion/$TiO_{2}$ nanocomposite membranes for high temperature PEM fuel cells, Int. J. Hydrogen Energy, 35, 9252-9260 (2010).   DOI
7 C.-Y. Hsu, M.-H. Kuo, and P.-L. Kuo, Preparation, characterization, and properties of poly (styrene-b-sulfonated isoprene)s membranes for proton exchange membrane fuel cells (PEMFCs), J. Membr. Sci., 484, 146-153 (2015).   DOI
8 V. Mehta and J. S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, 114, 32-53 (2003).   DOI
9 K. A. Mauritz and R. B. Moore, State of Understanding of Nafion, Chem. Rev., 104, 4535-4586 (2004).   DOI
10 N. Agmon, The Grotthuss mechanism, Chem. Phys. Lett., 244, 456-462 (1995).   DOI
11 A. V. Anantaraman and C. L. Gardner, Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion(R), J. Electroanal. Chem., 414, 115-120 (1996).   DOI
12 T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura, and T. Arimura, Ion and water transport characteristics of Nafion membranes as electrolytes, Electrochim. Acta, 43, 3741-3747 (1998).   DOI
13 P. Sridhar, R. Perumal, N. Rajalakshmi, M. Raja, and K. S. Dhathathreyan, Humidification studies on polymer electrolyte membrane fuel cell, J. Power Sources, 101, 72-78 (2001).   DOI
14 M. Watanabe, H. Uchida, Y. Seki, M. Emori, and P. Stonehart, Self humidifying polymer electrolyte membranes for fuel cells, J. Electrochem. Soc., 143, 3847-3852 (1996).   DOI
15 V. Ramani, H. R. Kunz, and J. M. Fenton, Metal dioxide supported heteropolyacid/Nafion(R) composite membranes for elevated temperature/low relative humidity PEFC operation, J. Membr. Sci., 279, 506-512 (2006).   DOI
16 M. A. Dresch, R. A. Isidoro, M. Linardi, J. F. Q. Rey, F. C. Fonseca, and E. I. Santiago, Influence of sol-gel media on the properties of Nafion-$SiO_{2}$ hybrid electrolytes for high performance proton exchange membrane fuel cells operating at high temperature and low humidity, Electrochim. Acta, 94, 353-359 (2013).   DOI
17 N. H. Jalani, K. Dunn, and R. Datta, Synthesis and characterization of Nafion(R)-$MO_{2}$ (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells, Electrochim. Acta, 51, 553-560 (2005).   DOI
18 A. Sacca, I. Gatto, A. Carbone, R. Pedicini, and E. Passalacqua, $ZrO_{2}$-Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature, J. Power Sources, 163, 47-51 (2006).   DOI
19 R. Hammami, Z. Ahamed, K. Charradi, Z. Beji, I. Ben Assaker, J. Ben Naceur, B. Auvity, G. Squadrito, and R. Chtourou, Elaboration and characterization of hybrid polymer electrolytes Nafion-$TiO_{2}$ for PEMFCs, Int. J. Hydrogen Energy, 380, 11583-11590 (2013).
20 M. B. Satterfield, P. W. Majsztrik, H. Ota, J. B. Benziger, and A. B. Bocarsly, Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells, J. Polym. Sci. B, 44, 2327-2345 (2006).   DOI
21 T. M. Thampan, N. H. Jalani, P. Choi, and R. Datta, Systematic approach to design higher temperature composite PEMs, J. Electrochem. Soc., 152, A316-A325 (2005).   DOI
22 V. S. Silva, J. Schirmer, R. Reissner, B. Ruffmann, H. Silva, A. Mendes, L. M. Madeira, and S. P. Nunes, Proton electrolyte membrane properties and direct methanol fuel cell performance, J. Power Sources, 140, 41-49 (2005).   DOI
23 H. N. Yang, D. C. Lee, S. H. Park, and W. J. Kim, Preparation of Nafion/various Pt-containing $SiO_{2}$ composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC, J. Membr. Sci., 443, 210-218 (2013).   DOI
24 D. C. Lee, H. N. Yang, S. H. Park, and W. J. Kim, Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell, J. Membr. Sci., 452, 20-28 (2014).   DOI
25 M. Li, Z.-G. Shao, H. Zhang, Y. Zhang, X. Zhu, and B. Yi, Self-humidifying $Cs_{2.5}H_{0.5}PW_{12}O_{40}/Nafion/PTFE$ composite membrane for proton exchange membrane fuel cells, Electrochem. Solid-State Lett., 9, A92-A95 (2006).   DOI
26 H. N. Yang, W. H. Lee, B. S. Choi, and W. J. Kim, Preparation of Nafion/Pt-containing $TiO_{2}$/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell, J. Membr. Sci., 504, 20-28 (2016).   DOI
27 A. Sacca, A. Carbone, E. Passalacqua, A. D'Epifanio, S. Licoccia, E. Traversa, E. Sala, F. Traini, and R. Ornelas, Nafion-$TiO_{2}$ hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs), J. Power Sources, 152, 16-21 (2005).   DOI
28 Y. Jun, H. Zarrin, M. Fowler, and Z. Chen, Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 36, 6073-6081 (2011).   DOI
29 J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z.-S. Liu, and S. Holdcroft, High temperature PEM fuel cells, J. Power Sources, 160, 872-891 (2006).   DOI
30 L. Wang, D. M. Xing, Y. H. Liu, Y. H. Cai, Z. G. Shao, Y. F. Zhai, H. X. Zhong, B. L. Yi, and H. M. Zhang, Pt/$SiO_{2}$ catalyst as an addition to Nafion/PTFE self-humidifying composite membrane, J. Power Sources, 161, 61-67 (2006).   DOI
31 H. L. Tang and M. Pan, Synthesis and characterization of a self-assembled Nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells, J. Phys. Chem. C, 112, 11556-11568 (2008).   DOI
32 D. Kim, M. A. Scibioh, S. Kwak, I.-H. Oh, and H. Y. Ha, Nano-silica layered composite membranes prepared by PECVD for direct methanol fuel cells, Electrochem. Commun., 6, 1069-1074 (2004).   DOI