Browse > Article
http://dx.doi.org/10.14478/ace.2018.1091

Antioxidant, Antimicrobial and Cytoprotective Effects of the Extract and Its Fraction Obtained from Rhizomes of Belamcanda chinensis (L.) DC  

Song, Ba Reum (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Lee, Sang Lae (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Lee, Yun Ju (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Shin, Hyuk Soo (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Publication Information
Applied Chemistry for Engineering / v.29, no.6, 2018 , pp. 772-781 More about this Journal
Abstract
In this study, we investigated antioxidant, antimicrobial and cytoprotective effects of 50% ethanol extract and ethyl acetate fraction from rhizomes of Belamcanda chinensis (L.) DC. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities ($FSC_{50}$) of the 50% ethanol extract and ethyl acetate fraction were 621.5 and $253.0{\mu}g/mL$, respectively. Total antioxidant capacities ($OSC_{50}$) of the extract and fraction were 13.6 and $3.0{\mu}g/mL$, respectively. Minimum inhibitory concentrations (MIC) of the ethyl acetate fraction for Staphylococcus aureus and Candida albicans were 156, $1,250{\mu}g/mL$, respectively, indicating similar or higher levels of those of using methyl paraben. Cytoprotective effects of the 50% ethanol extract against $^1O_2$-induced cellular damage (${\tau}_{50}$) showed in a dose dependent manner at 4 to $64{\mu}g/mL$. ${\tau}_{50}$ of the 50% ethanol extract, ethyl acetate fraction and (+)-${\alpha}$-tocopherol at $16{\mu}g/mL$ were 36.4, 45.0 and 45.8 min respectively, and the ethyl acetate fraction showed cytoprotective effects similar to (+)-${\alpha}$-tocopherol. In ultraviolet B radiation-induced HaCaT cell damage, the ethyl acetate fraction decreased intracellular reactive oxygen species (ROS) up to 45.9% at $8{\mu}g/mL$. Also in $H_2O_2$-induced HaCaT cell damage, the ethyl acetate fraction significantly increased the cell viability at $0.5{\sim}8.0{\mu}g/mL$. As a result of chemical analyses of the ethyl acetate fraction, the presence of flavonoids and polyphenol such as irisflorentin, irigenin, tectorigenin, resveratrol, iridin and tectoridin were identified. In conclusion, the extract/fraction from rhizomes of B. chinensis can be applied as a natural antioxidant and antimicrobial material to cosmetics.
Keywords
Belamcanda chinensis (L.) DC; antioxidant; reactive oxygen species; antimicrobial effect; cytoprotective effect; flavonoid;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. A. Farage, K. W. Miller, P. Elsner, and H. I. Maibach, Intrinsic and extrinsic factors in skin ageing: A review, Int. J. Cosmet. Sci., 30(2), 87-95 (2008).   DOI
2 M. A. Farage and K. W. Miller, Structural characteristics of the aging skin: a review, Cutan. Ocul. Toxicol., 26(4), 343-357 (2007).   DOI
3 M. Liu, S. Yang, L. Jin, D. Hu, Z. Wu, and S. Yang, Chemical constituents of the ethyl acetate extract of Belamcanda chinensis (L.) DC roots and their antitumor activities, Molecules, 17(5), 6156-6169 (2012).   DOI
4 A. R. Kim, M. C. Jung, H. I. Jeong, D. G. Song, Y. B. Seo, Y. H. Jeon, S. H. Park, H. S. Shin, S. L. Lee, and S. N. Park, Antioxidative and cellular protective effects of Lysimachia christinae Hance extract and fractions, Appl. Chem. Eng., 29(2), 176-184 (2018).   DOI
5 K. J. Trouba, H. K. Hamadeh, R. P. Amin, and D. R. Germoled, Oxidative stress and its role in skin disease, Antioxid. Redox Signal., 4(4), 665-673 (2002).   DOI
6 Y. S. Lee, M. E. Yun, Y. J. Lee, Y. M. Park, S. L. Lee, and S. N. Park, Antioxidant activities and cytoprotective effects of Lonicera japonica Thunb. extract and fraction against oxidative stress, Microbiol. Biotechnol. Lett., 46(1), 18-28 (2018).   DOI
7 J. Li, Winnie Z. M. Li, W. Huang, Anna W. H. Cheung, Cathy W. C. Bi, R. Duan, Ava J. Y. Guo, Tina T. X. Dong, and Karl W. K. Tsim, Quality evaluation of rhizoma belamcandae (Belamcanda chinensis (L.) DC) by using high-performance liquid chromatography coupled with diode array detector and mass spectrometry, J. Chromatogr. A, 1216(11), 2071-2078 (2009).   DOI
8 G. Y. Xie, Y. Zhu, P. Shu, X. Y. Qin, G. Wu, Q. Wang, and M. J. Qin, Phenolic metabolite profiles and antioxidants assay of three Iridaceae medicinal plants for traditional Chinese medicine "She-gan" by on-line HPLC-DAD coupled with chemiluminescence (CL) and ESI-Q-TOF-MS/MS, J. Pharm. Biomed. Anal., 98, 40-51 (2014).   DOI
9 Th. Herrling, K. Jung, and J. Fuchs, Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin, Spectrochim. Acta. A, 63(4), 840-845 (2006).   DOI
10 H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction, Apoptosis, 5(5), 415-418 (2000).   DOI
11 K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373-399 (2004).   DOI
12 S. H. Park, J. M. Kim, J. H. Kim, Y. S. Oh, D. H. Joo, E. Y. Lee, H. S. Shin, A. R. Kim, S. L. Lee, and S. N. Park, Antioxidative effects and component analysis of Graviola (Annona muricata) leaf extract/fractions. J. Soc. Cosmet. Sci. Korea, 43(4), 309-320 (2017).   DOI
13 S. J. Oh and J. H. Mo, A comparative study on bioactivity of dried and fermented Salicornia herbacea extracts as cosmetics materials, Asian J. Beauty Cosmetol., 9(4), 1-8 (2011).
14 Y. Zhang, G. Yao, X. Huang, and X. Wang, Advances in research on the main chemical constituents and pharmacological effects of Belamcanda chinensis (L.) DC. Asian J. Tradit. Med., 12(5), 201-209 (2017).
15 L. Zhang, K. Wei, J. Xu, D. Yang, C. Zhang, Z. Wang, and M. Li, Belamcanda chinensis (L.) DC-An ethnopharmacological, phytochemical and pharmacological review, J. Ethnopharmacol., 186, 1-13 (2016).   DOI
16 K. B. Oh, H. J. Kang, and H. Matsuoka, Detection of antifungal activity in Belamcanda chinensis by a single-cell bioassay method and isolation of its active compound, tectorigenin, Biosci. Biotechnol. Biochem., 65(4), 939-942 (2001).   DOI
17 R. H. Xin, J. F. Zheng, L. Cheng, W. J. Peng, and Y. J. Luo, Belamcanda chinensis (L.) DC: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine, Afr. J. Tradit. Complement. Altern. Med., 12(6), 39-70 (2015).   DOI
18 D. Wozniak, B. Janda, I. Kapusta, W. Oleszek, and A. Matkowski, Antimutagenic and anti-oxidant activities of isoflavonoids from Belamcanda chinensis (L.) DC., Mutat. Res. Genet. Toxicol. Environ. Mutagen., 696(2), 148-153 (2010).   DOI
19 D. Wozniak, J. Oszmianski, and A. Matkowski, Antimutagenic and antioxidant activity of the extract from Belamcanda chinensis (L.) DC., Acta Pol. Pharm., 63(3), 213-218 (2006).
20 M. Liu, S. Yang, L. Jin, D. Hu, W. Xue, and S. Yang, In vitro antitumor and antioxidant activities of Belamcanda chinensis (L.) DC., J. Med. Plant Res., 6(43), 5566-5569 (2012).
21 J. W. Lee, C. Lee, Q. Jin, M. S. Lee, Y. S. Kim, J. T. Hong, M. K. Lee, and B. Y. Hwang, Chemical constituents from Belamcanda chinensis and their inhibitory effects on nitric oxide production in RAW 264.7 macrophage cells, Arch. Pharm. Res., 38(6), 991-997 (2015).   DOI
22 M. Miyazawa, K. Sakano, S. I. Nakamura, H. Shimamura, and H. Kosaka, Antimutagenic activity of isoflavone from Belamcanda chinensis, J. Oleo Sci., 50(7), 545-554 (2001).   DOI
23 K. S. Ahn, E. J. Noh, K. H. Cha, Y. S. Kim, S. S. Lim, K. H. Shin, and S. H. Jung, Inhibitory effects of irigenin from the rhizomes of Belamcanda chinensis on nitric oxide and prostaglandin E2 production in murine macrophage RAW 264.7 cells, Life Sci., 78(20), 2336-2342 (2006).   DOI
24 G. H. Wang, G. X. Zou, X. M. You, Y. Zhang, H. Jiang, F. Li, and G. X. Li, Tectorigenin and irigenin inhibit lipopolysaccharide- induced nitric oxide synthase expression in murine macrophages. Biomed. Res., 28(12), 5412-5417 (2017).